|
|
The application of 2D seismic exploration to the exploration of sandstone type uranium deposits at the southern end of Daqing placanticline |
LIANG Jian-Gang1,2(), YANG Wei-Min3, SUN Da-Peng1,2, KUANG Hai-Yang1,2 |
1. Tianjin Center,China Geology Survey,Tianjin 300170,China 2. Key Laboratory of Energy Geology such as Uranium,Tianjin 300170,China 3. Insitute of Geophysical and Geochemical Exploration of Shanxi Province,Yuncheng 044000,China |
|
|
Abstract In the early stage of the exploration project of sandstone type uranium deposit in the south end of Daqing placanticline,many scattered industrial holes were found by using the drilling data of the oil field,which were proved by drilling.In order to further expand the prospecting results,the authors carried out seismic exploration.According to the characteristics of the buried depth of the strata in the working area,the reasonable acquisition parameters were selected,the stratigraphic division of the working area was unified,the sand body was delineated,and then the ancient river course was inferred,the reservoir problem in the exploration of sandstone type uranium deposit was solved,and good results were obtained.It is proved that seismic exploration can be used as the main method in the search for favorable reservoirs in sandstone type uranium exploration.
|
Received: 12 October 2019
Published: 29 December 2020
|
|
|
|
|
|
Structural unit zoning map of northern SongliaoBasin(adapted from reference[3])
|
层位 | 地震波场特征(层位底界面) | 测井曲线特征(电阻率) | 明水组 | 中强振幅、中高频连续反射,局部为弱振幅或复合波,Tk2m反射层在本区相对稳定,反射时间在100~500 ms之间,全区容易对比追踪 | 视电阻率曲线上部呈锯齿状中—低值,下部呈群峰状高阻值,自然电位曲线呈箱状中幅度负异常值 | 四方台组 | 中强振幅、中高频连续反射,局部为弱振幅或复合波,T03反射层在本区相对稳定,反射时间在150~550 ms之间,全区容易对比追踪。四方台GR异常反射特征表现为河道下切,顶部丘形反射,能量较弱,连续性差,未发育辨状河道处表现为强连续反射 | 视电阻率曲线上部呈低值,中、下部呈高阻值,自然电位曲线上部无负异常,中、下部呈中幅度负异常值,具水层特征 | 嫩江组三段 | 中弱振幅、中高频连续反射,局部表现为弱振幅的反射特征,T06反射层其上为较强能量的反射特征,其下为弱能量的相对空白反射特征,反映其水退沉积环境的变化,该反射层在本区较稳定,反射时间在500~1 050 ms之间,全区容易对比追踪 | 视电阻率曲线局部呈高阻值,自然电位局部呈中幅度负异常值,组成三个较为明显的反旋回 | 嫩江组五段 | 强振幅、中高频连续反射,T1反射波组在本区稳定,断层的波组错断特征清晰,反射时间在720~1 300 ms之间,为区域性标志层,全区可对比追踪 | 视电阻率曲线上部多呈平直状低值,下部局部呈锯齿状尖峰中阻值 | 姚家组 | 中强振幅、中高频连续反射,T1-1反射波组在本区较稳定,断层的波组错断特征较明显,反射时间在800~1 400 ms之间,全区可对比追踪 | 视电阻率曲线上部为低阻值,下部为高低阻值相间的不规则锯齿状尖峰 | 青山口组 | 中强振幅、中高频连续反射,T2反射波组在本区较稳定,断层的波组错断特征明显,反射时间在1 050~1 850 ms之间,为区域性标志层,全区可对比追踪 | 电阻率曲线局部呈尖峰状高阻值,自然电位无异常值 |
|
Characteristics of seismic wave field and logging curve of formation interface
|
|
Stratum calibration map of line D1
|
|
T0 contour map of reflection wave in layer T03
|
|
Floor contour structure of reflection wave in layer T03
|
|
Seismic wave group characteristics of sand body in Sifangtai formation of D0 line
|
|
Undercutting characteristics of ancient river channel on seismic profile(blue dotted part)
|
|
Abnormal characteristics of channel sand body profile(red type I,pink type II)
|
[1] |
马董伟. 地震勘探方法在薄覆盖层区城市活断裂探测中的应用[J]. 物探与化探, 2019,43(5):1038-1045.
|
[1] |
Ma D W. The application of seismic exploration method to active faults detection in urban thin overburden area[J]. Geophysical and Geochemical Exploration, 2019,43(5):1038-1045.
|
[2] |
吴教兵, 高鹏飞, 陆俊宏, 等. 综合物探方法在广西柳州隐伏断裂探测中的应用[J]. 地质与勘探, 2019,55(4):1026-1035.
|
[2] |
Wu J B, Gao P F, Lu J H, et al. Application of integrated geophysical methods to the detection of buried faults in Liuzhou,Guangxi[J]. Geology and Exploration, 2019,55(4):1026-1035.
|
[3] |
钟延秋. 大庆长垣构造演化特征及对砂岩型铀矿成矿的控制作用[J]. 东华理工大学学报:自然科学版, 2012,35(4):315-321.
|
[3] |
Zhong Y Q. Tectonic evolution and control effect on sandstone-type uranium mineralization in Changqi Placantieline[J]. Journal of East China University of Technology:Natural Science, 2012,35(4):315-321.
|
[4] |
汤超, 金若时, 谷社峰, 等. 松辽盆地北部四方台组工业铀矿体的发现及其意义[J]. 地质调查与研究, 2018,41(1):1-8,32.
|
[4] |
Tang C, Jin R S, Gu S F, et al. Discovery and significance of industrial uranium ore in Sifangtai Formation,north Songliao basin[J]. Geological Survey and Research, 2018,41(1):1-8,32.
|
[5] |
刘华健, 金若时, 肖鹏, 等. 松辽盆地北部古恰地区含铀岩系四方台组粒度特征及其沉积环境指示意义[J]. 地质调查与研究, 2018,41(1):40-50.
|
[5] |
Liu H J, Jin R S, Xiao P, et al. Grain-size characteristics of the Sifangtai Formation of uraniumbearing series in Guqia area,northern Songliao basin and its sedimentary environmental implications[J]. Geological Survey and Research, 2018,41(1):40-50.
|
[6] |
刘华健, 金若时, 李建国, 等. 松辽盆地北部含铀岩系沉积物源及铀源分析研究进展[J]. 地质调查与研究, 2017,40(4):281-289.
|
[6] |
Liu H J, Jin R S, Li J G, et al. Advance in reseach for sedimentary and uranium source analysis of the uranium-bearing series in northern Songliao basin[J]. Geological Survey and Research, 2017,40(4):281-289.
|
[7] |
徐建宇. 地震方法在城市浅覆盖区活断层调查中的应用[J]. 物探与化探, 2016,40(6):1103-1107.
|
[7] |
Xu J Y. The application of seismic method to the investigation of active faults in urban shallow Quaternary sediment area[J]. Geophysical and Geochemical Exploration, 2016,40(6):1103-1107.
|
[8] |
吴曲波, 李子伟, 潘自强, 等. 砂岩型铀矿地震勘探技术应用现状与发展[J]. 物探与化探, 2017,41(4):648-655.
|
[8] |
Wu Q B, Li Z W, Pan Z Q, et al. Application status and future trend of seismic exploration techniques in sandstone uranium deposits[J]. Geophysical and Geochemical Exploration, 2017,41(4):648-655.
|
[9] |
籍增贤, 韩长青. 北方中新生代产铀盆地的特点与找矿方向探讨[J]. 铀矿地质, 2006,22(4):229-234.
|
[9] |
Ji Z X, Han C Q. Discussion on the characteristics of Meso-Cenozoic U-productive basins in northern China and their prospecting direction[J]. Uranium Geologe, 2006,22(4):229-234.
|
[10] |
王志宏, 杨进, 山科社. CSAMT在可地浸砂岩型铀矿勘查中的应用[J]. 物探与化探, 2005,29(3):227-229.
|
[10] |
Wang Z H, Yang J, Shan K S. The application of CSAMT to the exploration of in-situ Leachable sandstone type uranium deposits[J]. Geophysical and Geochemical Exploration, 2005,29(3):227-229.
|
[11] |
胡霞, 吕建才, 胡英, 等. 利用油气勘探资料勘查铀矿的几点认识:以松辽盆地北部铀矿勘探为例[J]. 世界地质, 2019,38(2):405-411.
|
[11] |
Hu X, Lyu J C, Hu Y, et al. Some insights on exploration of uranium using oil and gas exploration data:taking uranium mine in northern Songliao Basin as an example[J]. Global Geology, 2019,38(2):405-411.
|
[12] |
吴曲波, 曹成寅, 李子伟. 准噶尔盆地五彩湾地区砂岩型铀矿地震勘探技术[J]. 物探与化探, 2018,42(6):1134-1143.
|
[12] |
Wu Q B, Cao C Y, Li Z W. The seismic exploration technology of the sandstone-type uranium deposit in Wucaiwan area of Junggar Basin[J]. Geophysical and Geochemical Exploration, 2018,42(6):1134-1143.
|
[13] |
李子伟, 吴曲波, 曹成寅. 砂岩型铀矿波阻抗反演砂体识别技术研究[J]. 世界核地质科学, 2017,34(4):222-227.
|
[13] |
Li Z W, Wu Q B, Cao C Y. Study on sandbed recognition technology using impedance inversion in sandstone type uranium deposit[J]. World Nuclear Geoscience, 2017,34(4):222-227.
|
[14] |
冯西会, 王中锋, 唐建益, 等. 用于铀矿勘探的高分辨率地震技术[J]. 物探与化探, 2007,31(s1):19-23.
|
[14] |
Feng X H, Wang Z F, Tang J Y, et al. The application of high resolution seismic techology to uranium ore exploration[J]. Geophysical and Geochemical Exploration, 2007,31(s1):19-23.
|
[1] |
YU Yong-Peng, YAN Zhao-Tao, MAO Xing-Jun, YANG Yan-Cheng, MA Yong-Xiang, HUANG Peng-Cheng, LU Ai-Guo, ZHANG Guang-Bing. The application of the comprehensive electric and seismic method to coal exploration in the huge Cenozoic coverage area[J]. Geophysical and Geochemical Exploration, 2021, 45(5): 1231-1238. |
[2] |
YONG Fan, LIU Zi-Long, JIANG Zheng-Zhong, LUO Shui-Yu, LIU Jian-Sheng. The key technology of shallow imaging in urban 3D seismic data processing[J]. Geophysical and Geochemical Exploration, 2021, 45(5): 1266-1274. |
|
|
|
|