|
|
Wavelet filter processing in airborne gravimetry |
Jing-Bo WANG1, Sheng-Qing XIONG2( ), Feng LUO2, Guan-Xin WANG2 |
1. College of Sciences, North China University of Technology, Beijing 100144, China 2. China Aero Geophysical and Remote Sensing Center for Natural and Resources, Beijing 100083, China |
|
|
Abstract Filtering is one of the crucial technologies for data processing in airborne gravimetry. Aimed at the wavelet filtering especially, the authors developed the wavelet low-pass filter for data processing in this paper. Based on the wavelet packet analysis, the wavelet packet tree was optimized according to the signal frequency range of corresponding estimated wavelet packet decomposition level, the desired low-pass cutoff frequency and the node’s arranged order on the basis of the “frequency” order of the wavelet packet coefficients from the low frequencies to the high frequencies. The main characteristics of the orthogonal or the biorthogonal wavelets were analyzed, and the new threshold processing schemes were proposed in this paper, The authors made the experimental researches on filtering GT-airborne gravity data using the wavelet filter. The results show that the discrete Meyer wavelet’s filtering has achieved the best effect among the wavelets available, and this wavelet filter for airborne gravity data has almost as good satisfactory filtering effect as GT-1A result, with the root-mean squared difference between 0.2 mGal and 0.3 mGal in comparison with GT-1A result.
|
Received: 12 August 2019
Published: 22 April 2020
|
|
Corresponding Authors:
Sheng-Qing XIONG
E-mail: xsq@agrs.cn
|
|
|
|
|
Wavelet decomposition tree at level 3
|
|
Unit of wavelet decomposition
|
|
Wavelet packet decomposition tree at level 3
|
|
Unit of wavelet packet decomposition
|
j(层次) | 分类名 | 序号(n) | 0 | 节点、频率排位(n) | 0 | 1 | 自然节点顺序(n) | 0 | 1 | 频率排位(n) | 0 | 1 | 2 | 自然节点顺序(n) | 0 | 1 | 2 | 3 | 频率排位(n) | 0 | 1 | 3 | 2 | 3 | 自然节点顺序(n) | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 频率排位(n) | 0 | 1 | 3 | 2 | 7 | 6 | 4 | 5 |
|
The “frequency” order of wavelet packet coefficients and natural nodes order at level 3
|
小波系 | dmey | dbN | symN | coifN | biorNr.Nd | 紧支撑性 | | ● | ● | ● | ● | 正交性 | ● | ● | ● | ● | | 双正交性 | | | | | ● | 对称性 | ● | | | | ● | 准对称性 | | | ● | ● | | 消失矩 | | ● | ● | ● | ● | 正则性 | | ● | ● | ● | ● | 正交分析 | ● | ● | ● | ● | | 双正交分析 | ● | ● | ● | ● | ● | 精确重构 | ● | ● | ● | ● | ● |
|
Wavelet families and main associated properties。
|
|
Wavelet packet decomposition tree of the low pass filter (filtering period: 60 s) 。
|
|
GT-1A raw unfiltered airborne gravity free air anomaly。
|
|
Wavelet packet decomposition tree of the low pass filter (filtering period: 100 s) 。
|
小波包节点 | dmey小波 | db7小波 | sym7小波 | coif5小波 | bior5.5小波 | bior6.8小波 | (6,0) | 0.3319 | 0.3847 | 0.3598 | 0.3638 | 0.3847 | 0.3802 | (10,24) | 0.2880 | 0.2296 | 0.2192 | 0.2409 | 0.2907 | 0.2349 | (14,408) | 0.2410 | 0.2274 | 0.2174 | 0.2318 | 0.2691 | 0.2591 | (14,409) | 0.2096 | 0.2310 | 0.2138 | 0.2329 | 0.2586 | 0.2569 | (13,205) | 0.2816 | 0.2348 | 0.2117 | 0.2299 | 0.2795 | 0.2377 | (12,103) | 0.2803 | 0.2366 | 0.2313 | 0.2114 | 0.2366 | 0.2519 | (11,50) | 0.2195 | 0.2165 | 0.2087 | 0.1935 | 0.2219 | 0.2131 | (9,13) | 0.7488 | 0.1221 | 0.1372 | 0.1124 | 0.1204 | 0.1092 | (8,7) | 0.0890 | 0.0538 | 0.0517 | 0.0482 | 0.0706 | 0.0523 | (7,2) | 0.0086 | 0.0316 | 0.0312 | 0.0191 | 0.0347 | 0.0289 | (5,1) | 3.8912×10-4 | 8.8581×10-4 | 8.7309×10-4 | 4.3837×10-4 | 0.0013 | 9.545×10-4 | (4,1) | 3.2967×10-4 | 2.7093×10-4 | 2.7056×10-4 | 2.7003×10-4 | 2.7207×10-4 | 2.7096×10-4 | (3,1) | 3.1459×10-4 | 2.5036×10-4 | 2.4919×10-4 | 2.5064×10-4 | 2.5232×10-4 | 2.4984×10-4 | (2,1) | 2.7890×10-4 | 2.0282×10-4 | 2.0162×10-4 | 2.0449×10-4 | 2.0277×10-4 | 2.0499 ×10-4 | (1,1) | 1.8993×10-4 | 9.1145×10-11 | 4.2125×10-11 | 1.6598×10-7 | 7.4349×10-11 | 1.2700×10-11 |
|
Difference statistics between the wavelet packet reconstruction’s computing result and GT-1A filtering result (60 s low-pass filter)
|
小波包节点 | dmey小波 | db11小波 | sym10小波 | coif5小波 | bior5.5小波 | bior6.8小波 | (7,0) | 0.6736 | 0.4610 | 0.5556 | 0.6279 | 0.5986 | 0.5803 | (9,6) | 0.1087 | 0.2421 | 0.2696 | 0.1314 | 0.2007 | 0.1795 | (12,60) | 0.0710 | 0.0913 | 0.1107 | 0.0596 | 0.1864 | 0.1679 | (12,61) | 0.1058 | 0.0569 | 0.0712 | 0.1003 | 0.1460 | 0.1106 | (11,31) | 0.1144 | 0.0657 | 0.1039 | 0.0951 | 0.1458 | 0.0866 | (10,14) | 0.1321 | 0.0305 | 0.0645 | 0.0336 | 0.1112 | 0.0527 | (8,2) | 0.0137 | 0.0165 | 0.0180 | 0.0166 | 0.0435 | 0.0332 | (6,1) | 3.6252×10-4 | 4.5743×10-4 | 4.8414×10-4 | 4.5477×10-4 | 0.0014 | 9.7659×10-4 | (5,1) | 3.1777×10-4 | 2.7884×10-4 | 2.7928×10-4 | 2.7893×10-4 | 2.8253×10-4 | 2.8021×10-4 | (4,1) | 3.0947×10-4 | 2.7023×10-4 | 2.7035×10-4 | 2.6972×10-4 | 2.6975×10-4 | 2.7044×10-4 | (3,1) | 2.9291×10-4 | 2.4962×10-4 | 2.5092×10-4 | 1.4942×10-7 | 2.5072×10-4 | 2.5129×10-4 | (2,1) | 2.5544×10-4 | 2.0668×10-4 | 2.0458×10-4 | 2.0489×10-4 | 2.0926×10-4 | 2.0485×10-4 | (1,1) | 1.5082×10-4 | 1.8804×10-12 | 2.1780×10-13 | 1.4942×10-7 | 5.4468×10-11 | 5.4468×10-11 |
|
Difference statistics between the wavelet packet reconstruction’s computing result and GT-1A filtering result (100 s low-pass filter)
|
小波 | dmey | db7 | sym7 | coif5 | bior5.5 | bior6.8 | 方案1 | 0.4880 | 0.7049 | 0.6914 | 0.5549 | 2.5541 | 0.9831 | 方案2 | 0.2989 | 0.3970 | 0.3972 | 0.3222 | 0.9135 | 0.4799 | 方案3 | 0.2797 | 0.3971 | 0.3972 | 0.3204 | 0.9135 | 0.4776 | 方案4 | 0.3255 | 0.3971 | 0.4847 | 0.3204 | 0.9722 | 0.4928 |
|
Difference statistics between the wavelet filtering result and GT-1A filtering result (filtering period: 60 s)
|
小波 | dmey | db11 | sym10 | coif5 | bior5.5 | bior6.8 | 方案1 | 0.4168 | 0.3734 | 0.3999 | 0.4236 | 1.0332 | 0.5504 | 方案2 | 0.2176 | 0.2714 | 0.3125 | 0.2739 | 0.5091 | 0.3161 | 方案3 | 0.2262 | 0.2714 | 0.3125 | 0.2748 | 0.8593 | 0.3177 | 方案4 | 0.3362 | 0.2745 | 0.3125 | 0.2980 | 0.8860 | 0.3177 |
|
Difference statistics between the wavelet filtering result and GT-1A filtering result (filtering period: 100 s)
|
|
Airborne gravity free air anomaly of dmey wavelet and GT-1A 60 s filter
|
|
Airborne gravity free air anomaly of db7 wavelet and GT-1A 60 s filter
|
|
Airborne gravity free air anomaly of sym7 wavelet and GT-1A 60 s filter
|
|
Airborne gravity free air anomaly of coif5 wavelet and GT-1A 60 s filter
|
|
Airborne gravity free air anomaly of bior5.5 wavelet and GT-1A 60 s filter
|
|
Airborne gravity free air anomaly of bior6.8 wavelet and GT-1A 60 s filter
|
|
Airborne gravity free air anomaly of dmey wavelet and GT-1A 100 s filter
|
|
Airborne gravity free air anomaly of db11 wavelet and GT-1A 100 s filter
|
|
Airborne gravity free air anomaly of sym10 wavelet and GT-1A 100 s filter
|
|
Airborne gravity free air anomaly of coif5 wavelet and GT-1A 100 s filter
|
|
Airborne gravity free air anomaly of bior5.5 wavelet and GT-1A 100 s filter
|
|
Airborne gravity free air anomaly of bior6.8 wavelet and GT-1A 100 s filter
|
|
Power spectrums of GT-1A raw unfiltered, 60 s and 100 s filtered airborne gravity free air anomaly
|
|
Airborne gravity free air anomaly of wavelets and GT-1A 60 s filter
|
|
Airborne gravity free air anomaly of wavelets and GT-1A 100 s filter
|
滤波周期 /s | 小波 | 最大差值 /mGal | 最小差值 /mGal | 平均差值 /mGal | 均方差值 /mGal | 比较点数 (N) | 60 | dmey | 0.6875 | -0.6580 | 0.0035 | 0.2797 | 3000 | | db7 | 0.8516 | -0.8573 | 0.0030 | 0.3970 | 3000 | | sym7 | 1.2614 | -1.0514 | -8.4227e-6 | 0.3972 | 3000 | | coif5 | 0.8497 | -0.7738 | 5.9950e-4 | 0.3204 | 3000 | | bior5.5 | 2.5249 | -2.3573 | -0.0070 | 0.9135 | 3000 | | bior6.8 | 1.3696 | -1.3667 | 0.0042 | 0.4776 | 3000 | 100 | dmey | 0.1578 | -0.4360 | -0.1747 | 0.2176 | 3000 | | db11 | 0.3647 | -0.6425 | -0.1758 | 0.2714 | 3000 | | sym10 | 0.5981 | -0.8946 | -0.1740 | 0.3125 | 3000 | | coif5 | 0.3847 | -0.6568 | -0.1783 | 0.2739 | 3000 | | bior5.5 | 0.8561 | -1.2599 | -0.2012 | 0.5091 | 3000 | | bior6.8 | 0.4365 | -0.7784 | -0.1820 | 0.3161 | 3000 |
|
The difference between wavelet filtering and GT-1A filtering result and statistics
|
[1] |
孙中苗 . 航空重力测量理论、方法及应用研究[D]. 郑州:解放军信息工程大学, 2004.
|
[1] |
Sun Z M . Theory, Methods and applications of airborne gravimetry[D]. Zhengzhou: PLA Information Engineering University, 2004.
|
[2] |
郭志宏, 罗锋, 安战锋 . 航空重力数据窗函数法FIR低通数字滤波试验[J]. 物探与化探, 2007,31(6):568-571.
|
[2] |
Guo Z H, Luo F, An Z F . Experiment researches on FIR low pass digital filters based on window functions of airborne gravity data[J]. Geophysical and Geochemical Exploration, 2007,31(6):568-571.
|
[3] |
郭志宏 . 航空重力数据测量处理方法技术研究[R].“百人计划”项目研究报告. 北京:中华人民共和国国土资源部, 2008.
|
[3] |
Guo Z H . The method and technology research of airborne gravity survey and data processing[R]. “Hundred People Plan” Project Research Report. Beijing: Ministry of Land and Resources of the People’s Republic of China, 2008.
|
[4] |
王静波 . 航空重力测量数据处理方法技术研究[D].北京:中国地质大学(北京), 2010.
|
[4] |
Wang J B . Methodologies and technology of data processing for airborne gravimetry[D]. Beijing: China University of Geosciences(Beijing), 2010.
|
[5] |
熊盛青, 周锡华, 郭志宏 , 等. 航空重力勘探理论方法及应用[M]. 北京: 地质出版社, 2010.
|
[5] |
Xiong S Q, Zhou X H, Guo Z H , et al. Theory, methods and application of the airborne gravity prospecting[M]. Beijing: Geological Publishing House, 2010.
|
[6] |
王静波, 熊盛青, 郭志宏 , 等. 航空重力异常估计方法研究[J]. 物探与化探, 2011,35(4):493-498.
|
[6] |
Wang J B, Xiong S Q, Guo Z H , et al. Research on methods of estimating airborne gravity anomaly[J]. Geophysical and Geochemical Exploration, 2011,35(4):493-498.
|
[7] |
郭志宏, 罗锋, 王明 , 等. 航空重力数据无限脉冲响应低通数字滤波器设计与试验研究[J]. 地球物理学报, 2011,54(8):2148-2153.
|
[7] |
Guo Z H, Luo F, Wang M , et al. The design and experiment of IIR low pass digital filters for airborne gravity data[J]. Chinese J. Geophys., 2011,54(8):2148-2153.
|
[8] |
王静波, 熊盛青, 郭志宏 , 等. 航空重力数据Kalman滤波平滑技术应用研究[J]. 地球物理学进展, 2012,27(4):1717-1722.
|
[8] |
Wang J B, Xiong S Q, Guo Z H , et al. Kalman smoothing for airborne gravity data[J]. Progress in Geophysics, 2012,27(4):1717-1722.
|
[9] |
罗锋, 郭志宏, 骆遥 , 等. 航空重力数据的等波纹FIR 低通滤波试验[J]. 物探与化探, 2012,36(5):856-860.
|
[9] |
Luo F, Guo Z H, Luo Y , et al. Experimental researches on fir lowpass filter based on equiripple[J]. Geophysical and Geochemical Exploration, 2012,36(5):856-860.
|
[10] |
阮秋琦 . 数字图象处理学[M]. 北京: 电子工业出版社, 2001.
|
[10] |
Ruan Q Q. Digital image processing[M]. Beijing: Publishing House of Electronics Industry, 2001.
|
[11] |
罗锋, 郭志宏, 王明 , 等. 基于DB小波阈值去噪的航空重力数据试验[J]. 物探与化探, 2013,37(4):645-654.
|
[11] |
Luo F, Guo Z H, Wang M , et al. Experimental reseaches on the theshold of airbone gravity data denoising based on DB wavelet transfom[J]. Geophysical and Geochemical Exploration, 2013,37(4):645-654.
|
[12] |
柳林涛, 许厚泽 . 航空重力测量数据的小波滤波处理[J]. 地球物理学报, 2004,47(3):490-494.
|
[12] |
Liu L T, Xu H Z . Wavelets in airborne gravimetry[J]. Chinese J. Geophys., 2004,47(3):490-494.
|
[13] |
孙中苗, 翟振和 . 航空重力测量数据的小波阈值滤波[J]. 武汉大学学报:信息科学版, 2009,34(10):1222-1225.
|
[13] |
Sun Z M, Zhai Z H . Filtering of the airborne gravity data by wavelet thresholding[J]. Geomatics and Information Science of Wuhan University, 2009,34(10):1222-1225.
|
[14] |
李肃义, 林君, 阳贵红 , 等. 电性源时域地空电磁数据小波去噪方法研究[J]. 地球物理学报, 2013,56(9):3145-3152.
|
[14] |
Li S Y, Lin J, Yang G H , et al. Ground-airborne electromagnetic signals de-noising using a combined wavelet transform algorithm[J]. Chinese J. Geophys. , 2013,56(9):3145-3152.
|
[15] |
章浙涛, 朱建军, 匡翠林 , 等. 小波包多阈值去噪法及其在形变分析中的应用[J]. 测绘学报, 2014,43(1):13-20.
|
[15] |
Zhang Z T, Zhu J J, Kuang C L , et al. Multi-threshold wavelet packet de-noising method and its application in deformation analysis[J]. Acta Geodaetica et Cartographica Sinica, 2014,43(1):13-20.
|
[16] |
武粤, 孟小红, 李淑玲 . 小波分析及其在我国地球物理学研究中的应用进展[J]. 地球物理学进展, 2012,27(2):750-760.
|
[16] |
Wu Y, Meng X H, Li S L . Wavelet analysis and its application in geophysics of China[J]. Progress in Geoophys., 2012,27(2):750-760.
|
[17] |
Misiti M, Misiti Y, Oppenheim G , et al. Wavelet toolbox for use with Matlab (User’s Guide Version 1)[M]. The MathWorks, Inc., 1996.
|
[18] |
关履泰 . 小波方法与应用[M]. 北京: 高等教育出版社, 2007.
|
[18] |
Guan L T. Methods of wavelets and their applications [M]. Beijing: Higher Education Press, 2007.
|
[19] |
Goswami J C, Chan A K . Fundamentals of wavelets: theory, algorithms, and applications[M]. John Wiley & Sons, 2011.
|
[20] |
吴继忠, 花向红, 高俊强 . 基于小波包分解的结构自振特征提取及多路径误差分离[J]. 武汉大学学报·信息科学版, 2010,35(4):486-490.
|
[20] |
Wu J Z, Hua X H, Gao J Q . Feature extraction of structure natural vibration and multipath separation based on wavelet packet decomposition[J]. Geomatics and information Science of Wuhan Univers, 2010,35(4):486-490.
|
[21] |
阎妍, 行鸿彦 . 基于小波包多阈值处理的海杂波去噪方法[J]. 电子测量与仪器学报, 2018,32(8):172-178.
|
[21] |
Yan Y, Xing H Y . Sea clutter de-noising based on wavelet packet multi-threshold method[J]. Journal of Electronic Measurement and Instrumentation, 2018,32(8):172-178.
|
[22] |
吕楠楠, 苏淑靖, 翟成瑞 . 改进小波包阈值算法在振动信号去噪中的应用[J]. 探测与控制学报, 2018,40(1):119-123.
|
[22] |
Lyu N N, Su S J, Zhai C R . Application of improved wavelet packet threshold algorithm in aibration signal denoising[J]. Journal of Detection & Control, 2018,40(1):119-123.
|
[23] |
Katunin A . B-spline wavelet packets and their application in the multiresoluton non-stationary signal processing[J]. Scientifc Problems of Machines Operation and Maintenance, 2010,163(3):103-115.
|
[24] |
李翔 . 基于小波分析的测量信号处理技术研究[D]. 哈尔滨:哈尔滨工业大学, 2009.
|
[24] |
Li X . Research on measurement signal processing technology based on wavelet analyse[D]. Harbin: Harbin Institute of Technology, 2009.
|
[25] |
Katunin A . The construction of high-order b-spline wavelets and their decomposition relations for faults detection and localization in composite beams[J]. Scientifc Problems of Machines Operation and Maintenance, 2011,167(3):43-59.
|
[1] |
CHEN Hao, ZHANG Wen-Zhi, SHU Qing, LI Jian, YANG Yi, ZHANG Kai-Song. The application of the CORS system to ground GNSS base station calculation in airborne gravimetry[J]. Geophysical and Geochemical Exploration, 2020, 44(6): 1408-1414. |
[2] |
ZOU Xin-Lei, CAI Shao-Kun, WU Mei-Ping, CAO Ju-Liang, ZHANG Kai-Dong. Dynamic errors separation of airborne gravimetry based on empirical mode decomposition[J]. Geophysical and Geochemical Exploration, 2016, 40(6): 1217-1221. |
|
|
|
|