|
|
Research,development and application effect of comprehensive evaluation technique of valley system secondary halo-remote sensing-tectonic lithofacies in basin-orogen-plateau inlaid structure and special landscape zone, Bolivia |
Yu-Long DU1,2, Wei-Xuan FANG3( ) |
1. Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650224, China 2. Sinotech Minerals Exploration Co., Ltd.,Beijing 100012, China 3. China Non-ferrous Metals Resource Geological Survey, Beijing 100012, China |
|
|
Abstract In this paper, the authors carried out tentative research and promotion application, which constitute an integrated approach to valley system secondary halo-remote sensing-tectonic lithofacies interpretation in basin-orogen-plateau inlaid structure and special landscape zone of the Tupiza and Cuprita copper deposits, Bolivia. Key points of combinational method and application effect are as follows: ① The key is interpreting mapping unit by remote sensing-tectonic lithofacies, which serves as base map of valley systems secondary halo and tectonic lithofacies mapping unit. Remote sensing-tectonic lithofacies interpreting can identify topography and landscape cell rapidly, and improve effective point ratio of geologic mapping and sampling of valley systems secondary halo. ② Sampling horizon and sampling depth were determined tentatively. It is known that the main sampling horizon is B soil and the best sampling size fraction is -10~+60 mesh grain size. ③ The technical method has achieved good results in application and promotion in the Tupiza and Cuprita copper deposits, which proves that the combination of technical methods is an economic, efficient and rapid comprehensive evaluation technique in basin-orogen-plateau inlaid structure and special landscape area of Andes. It also provides an effective exploration route of overseas investment, so as to control risk for Chinese-funded enterprises.
|
Received: 23 November 2018
Published: 25 October 2019
|
|
Corresponding Authors:
Wei-Xuan FANG
E-mail: 569026971@qq.com
|
|
|
|
|
Structural unit and the location of tentative and application area 1—Western Cordillera,average altitude of more than 4 500 m, sign of modern Andean main magma arc; 2—Altiplano plateau, average altitude of 4 000 m, composed of a number of inter-mountain basins, belongs to Tin polymetallic ore belt; 3—Eastern Cordillera, Au-Sb and Pb-Zn belt; 4—Subandean zone (thrust fold belt); 5—Craton (①Madre de díos plains, ②Beni plains, ③Chaco plains); 6—study area(Tu is the experimental area, Cup is application area); 7—provincial Capital; 8—other city; 9—plateau salt lake (SC is Coipasa salt lake, SU is Uyuni salt lake);10—plateau lake (LT is Titicaca lake, LPO is poopó lake)
|
|
Typical soil profile and special landscape in tentative area a—mapping units and interpretation on true-color remote sensing-tectonic lithofacies, which as base map of tectonic lithofacies mapping and secondary halo of valley systems; b—geomorphologic landscape in Cuprita mine; c—level gypsum rock; d—typical soil profile of volcanic terrain area (bearing copper); e—eypical soil profile of sandstone area, strong fading alteration, atacamite filled fracture; f—typical soil profile of purplish red siltstone which was exposed in gully; g—interbedding of gray caliche with siltstone; h—weathering crust; i—saline halo
|
样号 | 深度/粒级 | Au | Ag | Sn | As | Hg | Cu | Pb | Zn | Sb | Bi | Co | Ni | W | Mo | SS4-1 | 0~10 cm | 0.78 | 0.13 | 2.38 | 28.9 | 25.8 | 282 | 128 | 241 | 0.95 | 0.11 | 35.3 | 50.8 | 1.06 | 1.38 | SS4-2 | 10~20 cm | 0.91 | 0.17 | 2.18 | 65.1 | 19.2 | 553 | 451 | 358 | 0.86 | 0.11 | 41.0 | 55.2 | 1.08 | 1.49 | SS4-3 | 20~30 cm | 0.75 | 0.17 | 2.45 | 100 | 21.6 | 870 | 702 | 537 | 0.80 | 0.11 | 43.2 | 55.7 | 1.12 | 1.65 | SS4-4 | 30~40 cm | 1.49 | 0.29 | 2.16 | 294 | 23.7 | 2154 | 769 | 1429 | 0.94 | 0.14 | 65.1 | 64.1 | 1.17 | 4.02 | SS4-5 | 40~50 cm | 1.43 | 0.42 | 2.06 | 436 | 39.8 | 3312 | 3623 | 2855 | 0.99 | 0.16 | 99.0 | 71.6 | 1.15 | 3.78 | LS6-1 | -10~+20目 | 0.86 | 0.40 | 2.35 | 303 | 58.0 | 2118 | 2203 | 1579 | 0.87 | 0.13 | 64.4 | 63.9 | 1.10 | 3.06 | LS6-2 | -10~+40目 | 0.83 | 0.33 | 2.15 | 447 | 26.2 | 2749 | 2978 | 1720 | 0.89 | 0.15 | 79.7 | 64.7 | 1.07 | 6.30 | LS6-3 | -10~+60目 | 1.42 | 0.42 | 2.57 | 493 | 49.6 | 3045 | 3347 | 1804 | 0.99 | 0.16 | 78.0 | 65.3 | 1.11 | 3.73 | LS6-4 | -40目 | 2.72 | 0.18 | 2.03 | 203 | 82.5 | 1472 | 1755 | 966 | 1.01 | 0.14 | 45.5 | 44.3 | 0.90 | 2.27 | LS6-5 | -60目 | 2.84 | 0.16 | 2.27 | 114 | 61.5 | 1299 | 1454 | 934 | 1.08 | 0.15 | 30.8 | 39.9 | 0.82 | 1.53 |
|
Test results of valley systems secondary halo of sampling depth and roughing grain size in Tupiza
|
矿区 | 异常编号 | 面积/km2 | ∑NAP | 异常表达式 | 排序 | | T-6 | 0.5843 | 1.9628 | Cu0.9582-Co0.3421-Ni0.2648-Zn0.1285-Pb0.0972-Ag0.065-Sb0.0312 | 5 | Tupiza | T-8 | 0.3637 | 1.2496 | Co0.2586-Ni0.2337-Pb0.2002-Zn0.1921-Cu0.1506-Ag0.0418-Sb0.0405 | 9 | | T-17 | 1.3494 | 1.2214 | As0.3474-Au0.3452-Ag0.1351-Pb0.1268-Hg0.1176-Sb0.0638-Cu0.0279 | 10 | | C-4 | 1.687 | 43.608 | Pb32.6971-Cu2.8506-Ag2.6543-Sb2.17-As1.5618-Zn0.7472-Mo0.3438 | 1 | Cuprita | C-5 | 0.9306 | 5.2920 | Pb1.882-Cu1.4026-Ag1.2199-Co0.2745-Sb0.2078-As0.0654-Ni0.0603 | 3 | | C-6 | 1.3389 | 6.6474 | Cu4.0119-Ag1.3609-Pb0.8357-Nb0.3067-Hg0.0553-Sb0.0197-Mo0.0143 | 2 |
|
Characteristics of composite anomalies in Class A
|
|
The anomalies analyses of Cu, Pb and Zn in Tupiza copper deposit 1—composite anomaly; 2—anomaly contour of Cu(×10-6);3—reverse thrust; 4—copper orebody and copper metallization; 5—channel sampling point; 6—forecasting target area; 7—anomaly contour of Ta(×10-6); 8—anomaly contour of Nb(×10-6)
|
|
The anomalies analysis of Cu,Ag and Pb in Cuprita copper deposit 1—unconsolidated colluvial, alluvial deposits. 2—volcanogenic coarse-grained sandstones, gravelly sandstones, non-welded rhyolitic flow tuffs, reworked tuffs and silts; 3—olive gabbro; 4—plagioclase porphyries; 5—andesite volcanic breccia and volcanic agglomerate; 6—vesiculate andesite and basaltic trachyandesite; 7—basal conglomerate of copper bearing; 8—sedimentary tuff, tuffaceous sands and in-situ conglomerates; 9—feldspar sandstone, feldspar quartz sandstone; 10—inferred volcanic apparatus; 11—measured and inferred faults; 12—line of geological limitation; 13—verification copper orebody at surface (exaggerated scale); 14—forecasting target area; 15—composite anomaly and its number
|
|
NO. 0 drill hole section for anomalies verification in Tupiza tentative area, Bolivia 1—diabase-gabbro dikes, subvolcanic intrusion phase; 2—the second bed of the third member of Aroifilla formation, Upper Cretaceous, effusive facies; 3—the first bed of the third member of Aroifilla formation, Upper Cretaceous, volcaniclastic facies; 4—the second member of Aroifilla formation, Upper Cretaceous; 5—copper (silver) orebody and metallization; 6—thrust fault and fault zone and its strike direction; 7—drilling and its number; 8—copper orebody grade (%) and thickness (m); 9—associated silver at grade(10-6); 10—measured and inferred line of geological limitation; 11—forecasting copper (cobalt) orebody
|
[1] |
方维萱, 徐国端 . 勘查地球化学主要新进展与今后的重要发展领域[J]. 矿产与地质, 2005,19(6):599-605.
|
[1] |
Fang W X, Xu G D . Latest major progresses and key orientations exploration geochemistry[J]. Mineral Resources and Geology, 2005,19(6):599-605.
|
[2] |
方维萱, 郭玉乾 . 基于风险分析的商业性找矿预测新方法与应用[J]. 地学前缘, 2009,16(2):209-226.
|
[2] |
Fang W X, Guo Y Q . New ore prospecting methodologies based on risk analysis in commercial assessments and their applications[J]. Earth Science Frontiers, 2009,16(2):209-226.
|
[3] |
王学求, 张必敏, 刘雪敏 . 纳米地球化学:穿透覆盖层的地球化学勘查[J]. 地学前缘, 2012,19(3):101-112.
|
[3] |
Wang X Q, Zhang B M, Liu X M . Nanogeochemistry: Deep-penetrating geochemical exploration through cover[J]. Earth Science Frontiers, 2012,19(3):101-112.
|
[4] |
王学求, 张必敏, 姚文生 , 等. 地球化学探测:从纳米到全球[J]. 地学前缘, 2014,21(1):65-74.
|
[4] |
Wang X Q, Zhang B M, Yao W S , et al. Geochemical exploration: From nanoscale to global-scale patterns[J]. Earth Science Frontiers, 2014,21(1):65-74.
|
[5] |
王学求 . 全球地球化学基准:了解过去,预测未来[J]. 地学前缘, 2012,19(3):7-18.
|
[5] |
Wang X Q . Understanding the past and predicting the future[J]. Earth Science Frontiers, 2012,19(3):7-18.
|
[6] |
王学求, 徐善法, 程志中 , 等. 国际地球化学填图新进展[J]. 地质学报, 2006,80(10):1598-1606.
|
[6] |
Wang X Q, Xu S F, Cheng Z Z , et al. Progress on international geochemical mapping[J].Acta Geologica Sinica, 2006, 80(10):1598-1606.
|
[7] |
Brooks R R . Geobotany and Biogeochemistry in Mineral Exploration[M]. New York: Harper & Row, 1972.
|
[8] |
罗先熔 . 再论地球电化学测量法寻找隐伏矿床[J]. 桂林冶金地质学院学报, 1994,14(3):295-302.
|
[8] |
Luo X R . Secondary discussion on prospecting buried ore by geoelectrochemical method[J]. Journal of Guilin College of Geology, 1994,14(3):295-302.
|
[9] |
罗先熔, 段冶 . 我国地电提取测量法的应用现状及研究方向[J]. 桂林工学院学报, 1995,15(1):34-39.
|
[9] |
Luo X R, Duan Z . The present situation of application of the geoelectrochemical exploration method in China and its research direction[J]. Journal of Guilin Institute of Technology, 1995,15(1):34-39.
|
[10] |
Mclnnes Brent I A, Dunn Colin E, Cameron Eion E , et al. Biogeochemical exploration for gold in tropical rain forest regions of Papua New Guinea[J]. Journal of Geochemical Exploration, 1996,57:227-243.
|
[11] |
罗先熔, 胡云沪 . 云南宋家坡斑岩铜矿地电化学异常特征及机制[J]. 桂林工学院学报, 1998,18(3):42-47.
|
[11] |
Luo X R, Hu Y H . The geoelectrochemical anomaly feature and mechanism of porphyry copper deposit in Songjiapo, Yunnan[J]. Journal of Guilin Institute of Technology, 1998,18(3):42-47.
|
[12] |
罗先熔, 周涛发 . 吉林红旗岭铜镍矿床地电化学异常特征、成晕机制及找矿预测[J]. 吉林大学学报:地球科学版, 2004,34(2):304-308.
|
[12] |
Luo X R, Zhou T F . Feature and forming mechanism of geo-electrochemical anomalyof the Hongqiling copper-nickel deposit and its prediction, Jilin Province[J]. Journal of Jinlin University:Earth Science Edition, 2004,34(2):304-308.
|
[13] |
Reeves R D, Baker A J M, Romero R . The ultramafic flora of the Santa Elena Peninsula, Costa Rica: A biogeochemical reconnaissance[J]. Journal of Geochemical Exploration, 2007,93(3):153-159.
|
[14] |
张学洪, 杨文婷, 魏彩春 , 等. 重金属超富集植物根际微生态研究进展[J]. 桂林工学院学报, 2008,28(4):548-553.
|
[14] |
Zhang X H, Yang W T, Wei C C , et al. Development of rhizosphere microecology in heavy meatal hyper accumulators[J]. Journal of Guilin University of Technology, 2008,28(4):548-553.
|
[15] |
Reid Nathan, Hill Steven M, Lewis David M . Spinifex biogeochemical expressions of buried gold mineralization: The great mineral exploration penetrator of transported regolith[J]. Applied Geochemistry, 2008,23(1):76-84.
|
[16] |
宋慈安, 雷良奇 . 我国勘查植物地球化学的研究现状及发展方向[J]. 桂林工学院学报, 2009,29(1):1-11.
|
[16] |
Song C A, Lei L Q . Research and orientation of exploration vegetation geochemistry in China[J]. Journal of Guilin University of Technology, 2009,29(1):1-11.
|
[17] |
宋慈安, 杨仲平, 雷良奇 , 等. 西双版纳南坡铜矿区植物地球化学特征及找矿有效指示植物[J]. 桂林理工大学学报, 2010,30(1):1-14.
|
[17] |
Song C A, Yang Z P, Lei L Q , et al. Characteristics of phytogeochemistry and prospecting effective indicator plant in Xishuangbanna Nanpo copper deposit[J]. Journal of Guilin University of Technology, 2010,30(1):1-14.
|
[18] |
宋慈安, 宋玮, 雷良奇 , 等. 干旱荒漠区勘查植物地球化学研究现状及关键科学问题[J]. 桂林理工大学学报, 2014,34(4):595-605.
|
[18] |
Song C A, Song W, Lei L Q , et al. Current research and critical scientific issues of explorationvegetation geochemistry in arid desert area[J]. Journal of Guilin University of Technology, 2014,34(4):595-605.
|
[19] |
陈杨, 宋慈安, 杨仲平 . 西双版纳南坡铜矿区土壤中元素的赋存形态及植物的有效性[J]. 桂林理工大学学报, 2011,31(4):516-523.
|
[19] |
Chen Y, Song C A, Yang Z P . Occurrence and bioavailability of elements from the soil of Nanpo Copper Area in Xishuangbanna[J]. Journal of Guilin University of Technology, 2011,31(4):516-523.
|
[20] |
宋玮, 雷良奇, 宋慈安 , 等. 新疆喀拉通克铜镍矿区植物地球化学特征及找矿有效植物和元素的选择[J]. 桂林理工大学学报, 2016,36(2):195-206.
|
[20] |
Song W, Lei L Q, Song C A , et al. Characteristics of phytogeochemistry and prospecting choices of effective plants and elements in Kalatongke Cu-Ni ore field,Xinjiang[J]. Journal of Guilin University of Technology, 2016,36(2):195-206.
|
[21] |
刘攀峰, 罗先熔, 文美兰 , 等. 近三十年来我国地电化学技术研究回顾与展望[J]. 桂林理工大学学报, 2018,38(1):47-55.
|
[21] |
Liu P F, Luo X R, Wen M L , et al. Retrospect and prospect for geo-electrochemical technology research in the past three decades of China[J]. Journal of Guilin University of Technology, 2018,38(1):47-55.
|
[22] |
王学求 . 勘查地球化学近十年进展[J]. 矿物岩石地球化学通报, 2013,32(2):190-197.
|
[22] |
Wang X Q . A decade of exploration geochemistry[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2013,32(2):190-197.
|
[23] |
王学求 . 勘查地球化学80年来重大事件回顾[J]. 中国地质, 2013,40(1):322-330.
|
[23] |
Wang X Q . Landmark events of exploration geochemistry in the past 80 years[J]. Geology in China, 2013,40(1):322-330.
|
[24] |
Brooks R R . Biological methods of prospecting for gold[J]. Journal of Geochemical Exploration, 1982,1(7):109-122.
|
[25] |
罗先熔 . 多种新方法寻找隐伏矿的研究及效果[J]. 地质与勘探, 1995,31(1):44-49.
|
[25] |
Luo X R . A few new methods to find out concealed deposit and their effect[J]. Geology and Exploration, 1995,31(1):44-49.
|
[26] |
罗先熔, 张学洪, 张力 . 应用多种化探新方法寻找隐伏锑矿——以云南木利锑矿为例[J]. 桂林工学院学报, 1997,17(1):42-48.
|
[26] |
Luo X R, Zhang X H, Zhang L . The application of the various new methods in search for hidden stibium ore deposits: An example from Muli stibium mining area, Yunnan[J]. Journal of Guilin Institute of Technology, 1997,17(1):42-48.
|
[27] |
罗先熔, 陈三明, 杜建波 , 等. 地球电化学勘查法寻找不同埋深隐伏金矿的研究[J]. 矿物岩石, 2002,22(4):42-46.
|
[27] |
Luo X R, Chen S M, Du J B , et al. Study of geoelectro-chemical method in search for different hidden deposit[J]. Journal of Mineralogy and Petrology, 2002,22(4):42-46.
|
[28] |
Dunn C E, Angélicaa R S . Evaluation of biogeochemistry as a tool in mineral exploration and in monitoring environmental mercury dispersion in the Tapljos gold district, Amazania Brazil[R]. Geological Survery of Canada. Ottawa: Natural Resources Canada Library, 2000.
|
[29] |
王学求, 张必敏, 姚文生 , 等. 覆盖区勘查地球化学理论研究进展与案例[J]. 地球科学:中国地质大学学报, 2012,37(6):1126-1132.
|
[29] |
Wang X Q, Zhang B M, Yao W S , et al. New evidences for transport mechanism and case histories of geochemical exploration through covers[J]. Earth Science—Journal of China University of Geosciences, 2012,37(6):1126-1132.
|
[30] |
王学求, 迟清华 . 荒漠戈壁区地球化学调查方法取得重大进展[J]. 矿床地质, 2002,21(2):158-158.
|
[30] |
Wang X Q, Chi Q H . Significant progress from geochemical survey in desert and Gobi[J]. Mineral Deposits, 2002,21(2):158-158.
|
[31] |
周军, 陈明勇, 高鹏 , 等. 新疆东准格尔蚀变矿物填图及多元信息找矿[J]. 国土资源遥感, 2005,17(4):51-55.
|
[31] |
Zhou J, Chen M Y, Gao P , et al. Alteration mineral mapping and multi-information ore prospecting in eastern Junggar, Xinjiang[J]. Remote Sensing for Land and Resources, 2005,17(4):51-55.
|
[32] |
刘磊, 施明, 周军 , 等. 遥感、化探、地质信息综合在昌宁矿产勘查中的应用[J]. 地球科学与环境学报, 2007,29(4):383-386.
|
[32] |
Liu L, Shi M, Zhou J , et al. Synthetic analyses of remote sensing, geochemical surveying data and geology in ore exploration in Changning[J]. Journal of Earth Sciences and Environment, 2007,29(4):383-386.
|
[33] |
刘磊, 冯成贵, 杨丰柱 , 等. 新疆阿热勒托别地区遥感化探综合找矿研究[J]. 现代地质, 2009,23(3):564-568.
|
[33] |
Liu L, Feng C G, Yang F Z , et al. Synthetic analyses of remote sensing and geochemical surveying data in the ore exploration in Areletuobie, Xinjiang[J]. Geoscience, 2009,23(3):564-568.
|
[34] |
张文秦, 汪彩芳, 刘成东 , 等. 依据化探成果对东昆仑地质背景的讨论[J]. 现代地质, 2002,16(3):257-262.
|
[34] |
Zhang W Q, Wang C F, Liu C D , et al. A discussion on geological background of the east Kunlun area by geochemical exploration data[J]. Geoscience, 2002,16(3):257-262.
|
[35] |
玉苏普艾力·喀迪尔, 陈川, 刘雷 . 新疆博格达东段多金属矿带化探原生晕与激电测量相结合的找矿效果[J]. 现代地质, 2015,29(3):713-720.
|
[35] |
Yusupu A K, Chen C, Liu L . Prospecting effect on geochemical primary halos of polymetallic ore belt in eastern Bogda,Xinjiang combined with induced polarization survey[J]. Geoscience, 2015,29(3):713-720.
|
[36] |
吕国安, 刘权清 . 快速评价分散流异常的沟系原、次生晕方法[J]. 地质与勘探, 1987,23(9):53-58.
|
[36] |
Lyu G A, Liu Q Q . The ravine system primary-second halo method for fast evaluation of dispersion train anomalies[J]. Geology and Prospecting, 1987,23(9):53-58.
|
[37] |
吕国安 . 成矿区( 带)异常评价选择的基本条件研究[J]. 有色金属矿产与勘查, 1999,8(6):363-367.
|
[37] |
Lyu G A . Prerequisite for choice of anomalies in metallogenic belts[J]. Geological exploration for non-ferrous metals, 1999,8(6):363-367.
|
[38] |
吕国安 . 成矿区带地球化学异常评价方法[M]. 北京: 冶金工业出版社, 2002.
|
[38] |
Lyu G A. Evaluation method of geochemical anomalies in metallogenic belts[M]. Beijing: Metallurgical Industry Press, 2002.
|
[39] |
张振邦 . 沟系次生晕测量在国土资源大调查中的应用效果[J]. 矿产与地质, 2003,17(增刊):479-481.
|
[39] |
Zhang Z B . Application result of the valleys heterochronogenous soil geochemical prospecting in national earth resources survey[J]. Mineral resources and geology, 2003,17(S):479-481.
|
[40] |
刘增铁 . 北祁连地区金矿次生晕测量方法及找矿效果初探[J]. 地质与勘探, 1993,29(6):49-53.
|
[40] |
Liu Z T . Methods and effectiveness of secondary halo survey over Au-deposit in northern Qilian area, Qinghai province[J]. Geology and Prospecting, 1993,29(6):49-53.
|
[41] |
胡宝群 . 安家营子金矿土壤地球化学的试验研究[J]. 矿产与地质, 1998,12(1):55-60.
|
[41] |
Hu B Q . Exploration study of gold by soil geochemistry in the An Jiayingzi gold deposit[J]. Mineral resources and geology, 1998,12(1):55-60.
|
[42] |
夏广清 . 内蒙古东乌旗哈巴特盖银多金属矿土壤地球化学异常特征[J].地质找矿论丛, 2006(S1):144-148.
|
[42] |
Xia G Q . Soil geochemical anomaly characteristics of Habategai silver polymetallic ore deposit, east Ujimqin county, inner Mongolia[J]. Contributions to Geology and Mineral Resources Research, 2006(S1):144-148.
|
[43] |
彭头平, 彭冰霞, 李晓勇 , 等. 土壤地球化学找矿试验性研究[J]. 大地构造与成矿学, 2002,26(4):442-447.
|
[43] |
Peng T P, Peng B X, Li X Y , et al. A tentative study on soil geochemical for prospecting[J]. Geotectonica et Metallogenia, 2002,26(4):442-447.
|
[44] |
张国义, 张连发 . 土壤地球化学测量在山东蓬莱地区普查找金的效果[J]. 地质找矿论丛, 2003,18(S1):141-145.
|
[44] |
Zhang G Y, Zhang L F . The effect of soil geochemistry survey on prospect in Penglai county, Shandong province[J]. Contributions to Geology and Mineral Resources Research, 2003,18(S1):141-145.
|
[45] |
高珍权, 方维萱, 王伟 , 等. 沟系土壤测量在新疆乌恰县萨热克铜矿勘查中的应用效果[J]. 矿产与地质, 2005,19(6):669-673.
|
[45] |
Gao Z Q, Fang W X, Wang W , et al. Application effect of drainage soil survey in Sareke copper deposit prospecting[J]. Mineral resources and geology, 2005,19(6):669-673.
|
[46] |
罗正传 . 沟系次生晕测量在青海东昆仑造山带沟里地区的应用效果[J]. 矿产与地质, 2005,19(6):679-682.
|
[46] |
Luo Z Z . Application effect of secondary halo measurement of drainage system in Gouli area of east Kunlun orogenic belt,Qinghai[J]. Mineral resources and geology, 2005,19(6):679-682.
|
[47] |
吕军, 王建民, 王洪波 , 等. 土壤地球化学测量在三道湾子金矿床的应用[J]. 物探与化探, 2005,29(6):515-518.
|
[47] |
Lyu J, Wang J M, Wang H B , et al. The application of soil survey to the Sandaowanzi gold deposit[J]. Geophysical and Geochemical Exploration, 2005,29(6):515-518.
|
[48] |
金浚, 丁汝福, 陈伟民 . 森林沼泽区矿产资源地球化学勘查[J]. 物探与化探, 2003,27(6):433-448.
|
[48] |
Jin J, Ding R F, Chen W M . Geochemical mineral exploration in forest-swamp areas[J]. Geophysical and Geochemical Exploration, 2003,27(6):433-448.
|
[49] |
郝百武, 薛传东, 韩润生 , 等. 沟系土壤测量在贵州大厂矿田普晴锑金矿区地质找矿中的应用[J]. 地质与勘探, 2008,44(6):73-78.
|
[49] |
Hao B W, Xue C D, Han R S , et al. Application of soil geochemistry of drainage system for ore prospecting in the Puqing Sb-Au ore field[J]. Geology and Prospecting, 2008,44(6):73-78.
|
[50] |
刁理品, 韩润生, 方维萱 . 沟系土壤地球化学测量在贵州普晴锑金矿勘查区应用与找矿效果[J]. 地质与勘探, 2010,46(1):120-127.
|
[50] |
Diao L P, Han R S, Fang W X . Application of soil geochemical survey in the Puqing antimony-gold exploration area deposit and prospecting effect[J]. Geology and Prospecting, 2010,46(1):120-127.
|
[51] |
杨社锋, 方维萱, 胡瑞忠 , 等. 老挝南部波罗芬高原玄武岩砖红壤风化壳微量元素地球化学特征[J]. 矿产与地质, 2005,19(6):723-727.
|
[51] |
Yang S F, Fang W X, Hu R Z , et al. Geochemical characteristics of trace elements of basalt laterite regolith section in Boloven plateau, south Laos[J]. Mineral resources and geology, 2005,19(6):723-727.
|
[52] |
Jia R X, Fang W X, Hu R Z . Geochemical characteristics and significance of major elements, trace elements and REE of NM copper polymetal deposit in Laos[J]. Journal of Rare Earths, 2010,28(2):305-311.
|
[53] |
贾润幸, 方维萱 . 热带雨林景观区土壤测量的应用效果[J]. 物探与化探, 2011,35(4):443-447.
|
[53] |
Jia R X, Fang W X . The application effect of soil survey in rainforest area of Laos[J]. Geophysical and Geochemical Exploration, 2011,35(4):443-447.
|
[54] |
张道红, 孙媛 . 缅甸达贡山含镍风化壳地质地球化学特征及成矿作用[J]. 桂林理工大学学报, 2010,30(3):332-338.
|
[54] |
Zhang D H, Sun Y . Geological-geochemistry characteristics and mineral genesis of nickel-bearing weathering crust in Taguang Taung, Myanmar[J]. Journal of Guilin University of Technology, 2010,30(3):332-338.
|
[55] |
陈玉明, 王开天 . 秘鲁胡斯塔铜矿原生晕地球化学特征及找矿效果[J]. 物探与化探, 2008,32(2):126-130.
|
[55] |
Chen Y M, Wang T K . Lithogeochemical characteristics of the Justa copper deposit in Peru and the ore-prospecting effect[J]. Geophysical and Geochemical Exploration, 2008,32(2):126-130.
|
[56] |
陈玉明, 夏修展, 甘秋玲 , 等. 阿根廷米纳毕戈塔地区水系沉积物采样粒度试验研究[J]. 地质找矿论丛, 2016,31(2):295-302.
|
[56] |
Chen Y M, Xia X Z, Gan Q L , et al. Test study on particle size sampling of stream sediment in Minas Pirquitas Area of Argentina[J]. Contributions to Geology and Mineral Resources Research, 2016,31(2):295-302.
|
[57] |
罗正传 . 土壤地球化学测量在智利阿尔法矿区的应用效果[J]. 物探与化探, 2010,34(4):472-475.
|
[57] |
Luo Z Z . The effect of applying soil geochemical survey in the Aifa ore district, Chile[J]. Geophysical and Geochemical Exploration, 2010,34(4):472-475.
|
[58] |
王明国, 白凤军, 张晓永 , 等. 土壤地球化学测量在智利Henan X矿区应用效果[J]. 物探化探计算技术, 2013,35(6):727-732.
|
[58] |
Wang M G, Bai F J, Zhang X Y , et al. The applying effect on soil geochemical survey in the Henan X ore district, Chile[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2013,35(6):727-732.
|
[59] |
王明国, 张晓永, 白凤军 , 等. 土壤地球化学测量在智利塔拉帕卡大区地质勘查中的应用[J]. 物探与化探, 2013,37(3):394-399.
|
[59] |
Wang M G, Zhang X Y, Bai F J , et al. The application of soil geochemical survey to geological prospecting in Tarapacá region, Chile[J]. Geophysical and Geochemical Exploration, 2013,37(3):394-399.
|
[60] |
王晓辉, 王英超, 龙康华 , 等. 土壤地球化学测量在智利Iquique HN矿区的应用效果[J]. 黄金科学技术, 2014,22(1):47-51.
|
[60] |
Wang X H, Wang Y C, Long K H , et al. The Application Effect of Soil Geochemical Survey in the Iquique HN Mining Area of Chile[J]. Gold Science and Technology, 2014,22(1):47-51.
|
[61] |
刘君安, 朱云鹤, 赵晓丹 , 等. 秘鲁南部干旱荒漠戈壁残山景观区水系沉积物测量取样粒度研究[J]. 矿床地质, 2014,33(S1):1115-1116.
|
[61] |
Liu J A, Zhu Y H, Zhao X D , et al. Study of sampling size of stream sediment survey in arid desert Gobi, south Peru[J]. Mineral Deposits, 2014,33(S1):1115-1116.
|
[62] |
贺笑余, 王小高, 李丽 , 等. 智利AF矿区土壤地球化学异常特征及找矿方向[J]. 物探化探计算技术, 2014,36(5):634-640.
|
[62] |
He X Y, Wang X G, Li L , et al. Soil geochemical anomalies characteristics and the exploration direction discussion of AF deposit in Chile[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2014,36(5):634-640.
|
[63] |
王英超, 王晓辉, 郭继霜 , 等. 土壤地球化学测量在智利HIGUERILLAS铜矿区的应用效果[J]. 矿产与地质, 2015,29(2):237-242.
|
[63] |
Wang Y C, Wang X H, Guo J S , et al. The effect of applying pedogeochemical survey in Higuerillas Cu mining area Chile[J]. Mineral resources and geology, 2015,29(2):237-242.
|
[64] |
Kabata-Pendias A. Trace elements in soils and plants (Third Edition)[M]. Boca Raton: CRC Press, 2001.
|
[65] |
Dunn C E . Handbook of Exploration and Environmental Geo-chemistry,Volume 9(Handbook of Exploration and Environ-mental Geochemistry)[M]. Canada: Elsevier Science, 2007.
|
[66] |
Viladevall M, Puigserver D, Saavedra J , et al. Biogeo-chemical exploration using the thola shrub in the andean altiplano,Bolivia[J]. Geochemistry: Exploration,Environ-ment,Analysis, 2012,12(1):33-44.
|
[67] |
Oyarzún J, Levi B, Nystrom J O . AWithin-Plate Geochemical Signature and Continental Margin Setting for the Mesozoic-cenozoic Lavas of Central Chile, Second. ISAG, Oxford (UK), 1993, 419-422.
|
[68] |
Oyarzún J. Andean metallogenesis: a synoptical review and interpretation [C]//Tectonic Evolution of South America, 31st International Geological Congress, Río de Janeiro, 2000.
|
[69] |
Oyarzun R, Lillo J, Higueras P , et al. Strong arsenic enrichment in sediments from the Elqui watershed, Northern Chile: Industrial (gold mining at El IndioeTambo district) vs. geologic processes[J]. Geochem. Explor, 2004,84:53-64.
|
[70] |
Oyarzun R, Guevara S, Oyarzún J , et al. The As-contaminated Elqui river basin: a long lasting perspective ( 1975 -1995) covering the initiation and development of AueCueAs mining in the high Andes of northern Chile. Environ[J]. Geochem, 2006, Hlth 28: 431-443.
|
[71] |
Oyarzun R, Lillo J, Oyarzún J , et al. Strong metal anomalies in stream sediments from semiarid watersheds in northern Chile:when geological and structural analyses contribute to understanding environmental disturbances[J]. Int. Geol. Rev., 2006,48:1133-1144.
|
[72] |
Oyarzún J, Castillo D, Maturana H , et al. Abandoned tailings deposits, acid drainage and alluvial sediments geochemistry, in the arid Elqui River Basin,North-Central Chile[J]. J. Geochem. Explor, 2012,115:47-58.
|
[73] |
Jorge O, Roberto O, Javier L , et al. Distribution of chemical elements in calc-alkaline igneous rocks, soils, sediments and tailings deposits in northern central Chile[J]. Journal of South American Earth Sciences, 2016,69:25-42.
|
[74] |
方维萱 . 塔西中—新生代盆—山—原镶嵌构造区与大陆动力成矿系统[ C]//中国地球科学联合学术年会论文集, 2017.
|
[74] |
Fang W X . Mesozoic Cenozoic basin mountain original mosaic structure area and the continental dynamic metallogenic system in Taxi[ C]//Proceedings of the China Earth Science Joint Academic Annual Conference, 2017.
|
[75] |
许志琴, 赵中宝, 彭淼 , 等. 论“造山的高原”[J]. 岩石学报, 2016,32(12):3557-3571.
|
[75] |
Xu Z Q, Zhao Z B, Peng M , et al. Review of “orogenic plateau”[J]. Acta Petrologica Sinica, 2016,32(12):3557-3571.
|
[76] |
Sillitoe R H . Gold and copper Metallogeny of the central Andes: Past, present and future exploration objectives[J]. Economic Geology, 1992,87:2205-2216.
|
[77] |
Jorge O M . Geología y Yacimientos Minerales Metalogénesis Andina[J]. Economic Geology, 2008,103(4):1-6.
|
[78] |
Volker J, Joachim M, Klaus Wr , et al. Hercynian deformation and metamorphism in the Cordillera Oriental of Southern Bolivia, Central Andes[J]. Tectonophysics, 2002,345:119-130.
|
[79] |
Ewart A . The mineralogy and petrology of Tertiary-Recent orogenic volcanic rocks:with special reference to the andesite-basaltic compositional range[G]//Thorpe R S, ed. Andesites. New York:John Wiley and sons, 1982.
|
[80] |
Ramiro S S . Compendio de Geologia de Bolivia[J]. Revista Tecnia de Yacimientos Petroliferos Fiscales Bolivia, 2000,18(1-2):1-127.
|
[81] |
Friedrich L, Gerhard F, Rolf L R , et al. Pre-Cenozoic intra-plate magmatism along the Central Andes (17°S-34°S):Composition of the mantle at an active margin[J]. Science Direct, 2007,99:312-338.
|
[82] |
张潮, 陈玉明, 赵宏军 . 南美洲中安第斯地区构造——岩浆事件与成矿[J]. 地质论评, 2017,63(S):17-18.
|
[82] |
Zhang C, Chen Y M, Zhao H J . The Tectono-magmatic events and mineralization in the central Andes of south america[J]. Geological Review, 2017,63(S):17-18.
|
[83] |
赵宏军, 卢民杰, 邱瑞照 , 等. 浅谈安第斯成矿带铜矿时空分布规律[ C]//中国地球科学联合学术年会会议论文, 2014.
|
[83] |
Zhao H J, Lu M J, Qiu R Z , et al. Discussion on the temporal and spatial distribution of copper deposits in the Andean metallogenic belt[ C]// China Earth Science Joint Academic Annual Meeting, 2014.
|
[84] |
杜玉龙, 方维萱 . 安第斯玻利维亚段金属成矿带及战略选区方向探讨[J]. 矿物学报, 2017,37(增刊):876-877.
|
[84] |
Du Y L, Fang W X . Discussion on metallogenic belt and strategic selection direction in the Bolivian section of Andes[J]. Acta Mineralogica Sinica, 2017,37(S):876-877.
|
[1] |
WANG Bin, LUO Yan-Jun, MENG Guang-Lu, ZHANG Jing, ZHANG Hai-Di, CHEN Bo, HE Zi-Xin. Potential assessment of gold, copper, lead, zinc, tungsten, and tin deposits in Kyrgyzstan based on 1∶1 000 000 scale geochemical data[J]. Geophysical and Geochemical Exploration, 2022, 46(1): 58-69. |
[2] |
ZHAO Ze-Lin, LI Jun-Jian, ZHANG Tong, NI Zhen-Ping, PENG Yi, SONG Li-Jun. Geological characteristics and prospecting direction of rare earth element deposits in North China[J]. Geophysical and Geochemical Exploration, 2022, 46(1): 46-57. |
|
|
|
|