|
|
Forward analysis of array laterolog and rapid correction of environmental factors |
Jin FENG1, Xiao-Wei NI2, Qing YANG1, Yao GUAN1, Di-Ren LIU3,4() |
1. Shenzhen Branch of CNOOC (China) Co., Ltd., Shenzhen 518054, China 2. Tarim Oilfield Company,CNPC,Korla 841000,China 3. Key Laboratory of Exploration Technologies for Oil and Gas Resources of Ministry of Education, Yangtze University,Wuhan 430100,China 4. College of Geophysics and Oil Resources, Yangtze University, Wuhan 430100, China |
|
|
Abstract Resistivity logging data constitute an important basis for qualitative division of oil and gas reservoirs and quantitative calculation of oil saturation. However, resistivity logging data are vulnerable to environmental factors, which results in distortion of resistivity logging data. Taking array laterolog instrument as an example and based on finite element numerical simulation method, te authors studied the influence of borehole, surrounding rock and mud intrusion on its response. The results show that MLR1, MLR2 and MLR3 are obviously affected by borehole diameter when the borehole diameter is greater than 8 minutes, MLR4 is basically not affected by borehole diameter, and EALT results in high resistance mud environment are seriously distorted. MLR1, MLR2, MLR3 and MLR4 are seriously affected by the thickness of the layer when the thickness of the layer is less than 0.4m. The larger the difference of resistivity between the surrounding rock and the target layer, the greater the influence of ELAT response. When the invasion radius is less than 30 minutes, R1-MLR3 is greatly affected. When the ratio of formation resistivity to invasion zone resistivity reaches 5,10,100, the apparent resistivity distortion can be higher than 50%. Based on forward analysis, the authors drew the correction chart of EALT wellbore, surrounding rock and mud invasion and propose a fast correction method for the complex correction chart of surrounding rock, which can provide some reference for the correction of environmental factors of EALT logging data.
|
Received: 25 February 2019
Published: 25 October 2019
|
|
Corresponding Authors:
Di-Ren LIU
E-mail: liudr666@163.com
|
|
|
|
|
Electrode structure
|
|
Formation model
|
|
Effect of boreholes a—impact of boreholes; b—effect of mud resistivity
|
|
Well hole correction plate
|
|
Effect of surrounding rocks a—effect of thickness; b—effect of resistivity of surrounding rocks
|
|
Calibration of surrounding rock
|
Rt/Rs | 0.1 | 0.2 | 0.5 | 2 | 4 | 6 | 10 | 20 | 50 | a1 | -75.74 | -35.00 | -1.42 | -14.32 | -23.43 | -19.44 | -5.69 | 16.28 | 28.54 | a2 | 85.29 | 44.01 | 6.73 | 9.42 | 18.53 | 17.66 | 9.94 | -4.43 | -14.15 | a3 | -33.00 | -18.80 | -4.66 | -0.56 | -2.53 | -2.75 | -1.70 | 0.71 | 2.48 | a4 | 5.70 | 3.91 | 1.95 | 0.56 | 0.41 | 0.34 | 0.21 | 0.03 | -0.11 | R2 | 0.98 | 0.97 | 0.99 | 1 | 0.96 | 0.99 | 0.97 | 0.99 | 1 |
|
MLR1 correction coefficient table for surrounding rocks(0.1 m≤H≤0.4 m)
|
Rt/Rs | 0.1 | 0.2 | 0.5 | 2 | 4 | 6 | 10 | 20 | 50 | a1 | 10.07 | 5.29 | 1.76 | -2.28 | -6.46 | -10.35 | -17.21 | -29.20 | -41.71 | a2 | -29.26 | -15.38 | -5.11 | 6.62 | 18.87 | 30.30 | 50.49 | 85.97 | 124.10 | a3 | 29.83 | 15.68 | 5.23 | -6.95 | -20.08 | -32.40 | -54.24 | -92.93 | -136.10 | a4 | -12.29 | -6.42 | -2.17 | 3.10 | -9.19 | 14.97 | 25.28 | 43.73 | 65.31 | a5 | 3.05 | 2.10 | 1.38 | 0.44 | -0.64 | -1.66 | -3.46 | -6.73 | -10.77 | R2 | 0.99 | 0.97 | 0.95 | 0.98 | 0.97 | 0.96 | 0.99 | 1 | 0.99 |
|
MLR1 correction coefficient table for surrounding rocks(0.4 m≤H≤1 m)
|
Rt/Rs | 0.1 | 0.2 | 0.5 | 2 | 4 | 6 | 10 | 20 | 50 | a1 | -2.32 | -3.74 | -10.81 | 13.79 | 8.83 | 7.81 | 7.08 | 6.60 | 6.28 | a2 | 4.32 | 5.74 | 12.81 | -11.79 | -6.83 | -5.81 | -5.08 | -4.60 | -4.28 | R2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
|
MLR1 correction coefficient table for surrounding rocks (1 m≤H≤2 m)
|
|
Effect of mud intrusion a—impact of intrusion radius; b—impact of intrusive zone resistivity
|
|
Mud intrusion correction plate
|
[1] |
杨博, 潘懋, 侯晓琳 . 岩性折剖面自识别可视化算法在安塞油田的应用[J]. 特种油气藏, 2017,24(4):98-100.
|
[1] |
Yang B, Pan M, Hou X L . The application of automatically identified and visual algorithm for folded lithologic cross-section in Ansai oil field[J]. Special Oil & Gas Reservoirs, 2017,24(4):98-100.
|
[2] |
马永生, 张建宁, 赵培荣 , 等. 物探技术需求分析及攻关方向思考——以中国石化油气勘探为例[J]. 石油物探, 2016,55(1):1-9.
|
[2] |
Ma Y S, Zhang J N, Zhao P R , et al. Requirement analysis and research direction for the geophysical prospecting technology of SINOPEC[J]. Geophysical Prospecting for Petroleum, 2016,55(1):1-9.
|
[3] |
蒋维红, 董春梅, 闫家宁 . 岩相古地理学研究现状及发展趋势[J]. 断块油气田, 2007,14(3):1-3.
|
[3] |
Jiang W H, Doug C M, Yan J N . Study on present situation and trend of lithofacies paleogeography[J]. Fault-Block Oil and Gas Field, 2007,14(3):1-3.
|
[4] |
肖东, 毛保华, 马欢波 , 等. EALT阵列侧向电阻率测井井场处理软件算法[J]. 测井技术, 2016,40(4):432-438.
|
[4] |
Xiao D, Mao B H, Ma H B , et al. EALT array lateral logging well site processing software algorithm[J]. Well Logging Technology, 2016,40(4):432-438.
|
[5] |
刘迪仁, 万文春, 夏培 , 等. 不同井眼条件下的水平井双侧向测井响应[J]. 物探与化探, 2012,36(3):422-425.
|
[5] |
Liu D R, Wan W C, Xia P , et al. The response of dual laterolog to different borehole conditions in the horizontal well[J]. Geophysical and Geochemical Exploration, 2012,36(3):422-425.
|
[6] |
舒心, 柯式镇, 许巍 , 等. 高分辨率阵列侧向测井井眼影响自动校正研究[J]. 断块油气田, 2016,23(4):470-475.
|
[6] |
Shu X, Ke S Z, Xu W , et al. Auto-correction of borehole effect for high-resolution array laterolog[J]. Fault-Block Oil and Gas Field, 2016,23(4):470-475.
|
[7] |
倪小威, 徐观佑, 别康 , 等. 大斜度井/水平井阵列侧向测井响应及围岩/层厚影响快速校正[J]. 大庆石油地质与开发, 2018,37(2):144-151.
|
[7] |
Ni X W, Xu G Y, Bie K , et al. Array laterolog responseand rapid correction of the surrounding rock/layer thickness influence for highly deviated/horizontal wells[J]. Petroleum Geology & Oilfield Development in Daqing, 2018,37(2):144-151.
|
[8] |
王小明, 万文春, 赵建武 , 等. 水平井网状裂缝储层双侧向响应特性研究[J].物探与化探,2014,38(6):1218-1221.
|
[8] |
Wang X M, Wan W C, Zhao J W , et al. Characteristics of dual laterolog response of net-fracture reservoirs in horizontal well[J].Geophysical and Geochemical Exploration,2014,38(6):1218-1221.
|
[9] |
邓少贵, 徐悦伟, 蒋建亮 . 倾斜井非均匀地层的阵列侧向测井响应研究[J]. 测井技术, 2010,34(2):130-134.
|
[9] |
Deng S G, Xu Y W, Jiang J L . Study on the array laterolog response of heterogeneous formation in deviated well[J]. Well Logging Technology, 2010,34(2):130-134.
|
[10] |
别康, 徐观佑, 万文春 , 等. 差分进化算法在双侧向和双感应测井联合反演中的应用[J]. 测井技术, 2015,39(6):704-709.
|
[10] |
Bie K, Xu G Y, Wan W C , et al. Application of differential evolution in dual laterolog and dual induction log joint inversion[J]. Well Logging Technology, 2015,39(6):704-709.
|
[11] |
仵杰, 谢尉尉, 解茜草 , 等. 阵列侧向测井仪器的正演响应分析[J]. 西安石油大学学报:自然科学版, 2008,23(1):73-76.
|
[11] |
Wu J, Xie W W, Xie X C , et al. Forward response analysis of array lateral logging tool[J]. Journal of Xi’an Shi You University:Natural Science Edition, 2008,23(1):73-76.
|
[12] |
邓少贵, 李智强, 范宜仁 , 等. 斜井泥浆侵入仿真及其阵列侧向测井响应数值模拟[J]. 地球物理学报, 2010,53(4):994-1000.
|
[12] |
Deng S G, Li Z Q, Fan Y R , et al. Numerical simulation of mud invasion and its array laterolog response in deviated wells[J]. Chinese Journal of Geophysics, 2010,53(4):994-1000.
|
[13] |
刘振华, 胡启 . 阵列侧向测井响应的计算及其特征[J]. 西安石油大学学报:自然科学版, 2002,17(1):53-57.
|
[13] |
Liu Z H, Hu Q . Calculation and characteristics of array laterlog responses[J]. Journal of Xi’an Shi You University:Natural Science Edition, 2002,17(1):53-57.
|
[14] |
潘克家, 王文娟, 汤井田 , 等. 高分辨率阵列侧向测井的数学模型及有限元快速正演[J]. 地球物理学报, 2013,56(9):3197-3211.
|
[14] |
Pan K J, Wang W J, Tang J T , et al. Mathematical model and fast finite element modeling of high resolution array lateral logging[J]. Chinese Journal of Geophysics, 2013,56(9):3197-3211.
|
[15] |
邓少贵, 李智强, 陈华 . 煤层气储层裂隙阵列侧向测井响应数值模拟与分析[J]. 煤田地质与勘探, 2010,38(3):55-60.
|
[15] |
Deng S G, Li Z Q, Chen H , et al. The simulation and analysis of array lateral log response of fracture in coalbed methane reservoir[J]. Coal Geology & Exploration, 2010,38(3):55-60.
|
[16] |
范宜仁, 蒋建亮, 邓少贵 , 等. 高分辨率阵列侧向测井响应数值模拟[J]. 测井技术, 2009,33(4):333-336.
|
[16] |
Fan Y R, Jiang J L, Deng S G , et al. Numerical simulation of high resolution array lateral logging responses[J]. Well Logging Technology, 2009,33(4):333-336.
|
[17] |
祝鹏, 林承焰, 李智强 , 等. 水平井和大斜度井中阵列侧向测井响应数值模拟[J]. 吉林大学学报:地球科学版, 2015,45(6):1862-1869.
|
[17] |
Zhu P, Lin C Y, Li Z Q , et al. Numerical simulation of array laterolog response in horizontal and highly deviated wells[J]. Journal of Jilin University :Earth Science Edition, 2015,45(6):1862-1869.
|
[18] |
程文娟, 许月晨, 贺飞 , 等. 径向渐变地层阵列侧向电阻率测井响应研究[J]. 测井技术, 2018( 3).
|
[18] |
Cheng W J, Xu Y C, He F , et al. Study on resistivity logging response of array lateral logging under radial gradual formation[J].Well Logging Technology, 2018( 3).
|
[19] |
马欢波, 王建波 . 阵列侧向测井影响因素分析[J]. 石油管材与仪器, 2017,3(2):78-80.
|
[19] |
Ma H B, Wang J B . Influence factors analysis of array lateral logging[J]. Petroleum Instruments, 2017,3(2):78-80.
|
[20] |
肖加奇, 张庚骥 . 水平井和大斜度井中双侧向测井响应的正演[J]. 中国石油大学学报:自然科学版, 1996(1):24-28.
|
[20] |
Xiao J Q, Zhang G Q . Forward modeling of double lateral logging response in horizontal wells and high-angle wells[J]. Journal of China University of Petroleum:Natural Science Edition, 1996(1):24-28.
|
[21] |
倪小威, 徐观佑, 冯加明 , 等. 斜井中各向异性储层阵列侧向测井正演响应特性[J]. 断块油气田, 2017,24(5):637-641.
|
[21] |
Ni X W, Xu G Y, Feng J M , et al. Forward response of array lateral logging in anisotropic reservoir of inclined shaft[J]. Fault-Block Oil and Gas Field, 2017,24(5):637-641.
|
|
|
|