|
|
The latest progress in air gravity measurement and data processing technology abroad |
Hong ZHANG1, Neng ZHOU2, Xiao-Dan DENG3, Meng WANG3, Xing-Su LI3 |
1. Beijing Information Technology School of Information Management, Beijing 100192, China 2. Beijing Super-sonic Technology Co., Ltd., Beijing 100192, China 3. Key Laboratory of Airborne Geophysics and Remote Sensing Geology Ministry of Natural Resources, Beijing 100083, China |
|
|
Abstract As a new geophysical exploration technology, airborne gravity has developed rapidly. It is of great significance and practical value to master the latest foreign technology for carrying out this survey and research in China and catching up with the advanced world level. In this paper, for the first time, the latest airborne gravity survey and data processing technologies abroad were comprehensively studied and summarized. The most advanced systems integration, survey methods and data processing technologies abroad were systematically introduced. The analysis and comparison were carried out, and the future development trend was prospected. Therefore, readers can fully understand the most advanced airborne gravity technology abroad, and directly and deeply use these technologies in survey and research, so as to promote and push forward the development of airborne gravity technology in China.
|
Received: 19 February 2019
Published: 25 October 2019
|
|
|
|
|
|
DA-42 aircraft installed with AIRGrav gravimeter
|
|
BN-2T aircraft installed with airborne gravity,magnetic,radiation
|
|
GT-2A gelicopter airborne gravity survey system
|
|
Airborne bouguer gravity anomaly of helicopter in Podolsky area
|
参 数 | SGL公司(AIRGrav) | CMG公司(GT-1/2A) | 测量精度 (测线与控制线交叉 点残差的均方差) | 所有测线 | ≤0.7×10-5 m/s2(RMS) (0阶水平调整后) | ≤0.8×10-5 m/s2(RMS) (1阶水平调整后) | 单架次 | ≤1.25×10-5 m/s2(RMS) (0阶水平调整后) | ≤1.5×10-5 m/s2(RMS) (1阶水平调整后) | 内符合精度 | 所有重复线计算 | ≤ 0.6×10-5 m/s2(RMS) | ≤ 0.6×10-5 m/s2(RMS) | 零 漂 | 整架次 | ≤ 2.0×10-5 m/s2 | ≤ 2.0×10-5 m/s2 | 定位误差 | X、Y、Z精度(差分后) | ≤±5 m | ≤±10 cm | 测线偏航距 | 测线偏航超过100 m | 连续长度<4 km | 连续长度<5 km | 飞行高度 | 与设计高度 | 与设计高度偏差>15 m的连续 长度<7 km | (设计高度±10 m)之内占80% 以上(平飞) | 离地垂直高度 | 采用沿起伏飞行,飞行高度 一般为200 m(真高) | 300 m~600 m(平飞),离最高障碍 物不小于200 m。 | 测量比例尺 | 基础地质及油气调查等 | 1:5万~1:20万 | 1:5万~1:20万 | 矿产资源等 | 1:5 000~1:2.5万 | 1:1万~1:5万 | 控制线 | 控制线垂直于测线,其线距一般为 测线线距的10倍 | 控制线垂直于测线,其线距一般为 测线线距的10倍。 | GPS卫星数 | 共用星数≥4颗 | 星数≥6颗 | 飞行速度 | 固定翼:160~220 km/h 直升机:50~160 km/h | 固定翼:160~220 km/h 直升机:50~160 km/h |
|
Summary of technical parameters of airborne gravity survey abroad
|
|
Flow chart of Airborne gravity Bouguer correction
|
[1] |
熊盛青, 周锡华, 王林飞 , 等. 航空地球物理综合探测理论技术方法及装备[M]. 北京: 地质出版社, 2018.
|
[1] |
Xiong S Q, Zhou X H, Wang L F , et al. Theory, technology and instruments of comprehensive airborne geophysical exploration[M]. Beijing: Geological Publishing House, 2018.
|
[2] |
王静波, 熊盛青, 周锡华 , 等. 航空重力测量系统研究进展[J]. 物探与化探, 2009,33(4):368-373.
|
[2] |
Wang J B, Xiong S Q, Zhou X H , et al. The advances in the study of the airborne gravimetry system[J]. Geophysical and Geochemical Exploration, 2009,33(4):368-373.
|
[3] |
France B, Martin B . Project report: airborne gravity survey QUEST south, British columbia[D]. Vancouver:Geoscience British Columbia Society, 2009.
|
[4] |
Luise S, Stephen F. Advances in SGL AIRGrav acquisition and processing [C]//Airborne Gravity, 2010.
|
[5] |
Gabell A, Tuckett H, Olson D. The GT-1A mobile gravimeter [C]// In ASEG-PESA, Airborne Gravity 2004 Workshop, 2004: 55-61.
|
[6] |
UTS Geophysics, Airborne Petroleum Geophysics . Airborne GT-1A gravity survey for UTS geophysics acquisition and processing report survey [R]. 2009.
|
[7] |
Mogilevsky V, Pavlov S . Detailed helicopter-borne gravity[R]. Aerogeophysica Inc. Moscow. Russia, 2004.
|
[8] |
Baranyi E, Ellis R . An airborne gravity case study of the Podolsky eposit, Sudbury Basin[R]. Airborne Gravity, 2010.
|
[9] |
Youngman M . GRAV-D field operations handbook[S]. NOAA’s National Geodetic Survey, 2012.
|
[10] |
Huang Y N, Arne V O, Wu M P . SGA-WZ: a new strapdown airborne gravimeter[J]. Sensors 2012, 2012,12:9336-9348.
|
[11] |
Liu P, Zhang K, Wu M. Research on the methods of acceleration estimation based on difference between satellites [C]// 2010 International Symposium on Inertial Technology and Navigation, 2010.
|
[12] |
屈进红, 郭素然, 周锡华 , 等. 相关性分析在GT航空重力仪零漂改正中的应用[J]. 物探与化探, 2016,40(4):838-842.
|
[12] |
Qu J H, Guo S R, Zhou X H , et al. The correlation analytical method and its application to GT aerogravimeter drift correction[J]. Geophysical and Geochemical Exploration, 2016,40(4):838-842.
|
[13] |
罗锋, 郭志宏, 骆遥 , 等. 航空重力数据的等波纹FIR低通滤波试验[J]. 物探与化探, 2012,36(5):856-860.
|
[13] |
Luo F, Guo Z H, Luo Y , et al. Experimental researches on FIR lowpass filter based on equiripple[J]. Geophysical and Geochemical Exploration, 2012,36(5):856-860.
|
[14] |
郭志宏, 罗锋, 安战锋 . 航空重力数据窗函数法FIR低通数字滤波试验[J]. 物探与化探, 2007,31(6):568-571, 576.
|
[14] |
Guo Z H, Luo F, An Z F , et al. Experimental researches on FIR lowpass digital filters based on Window functions of airborne gravity data[J]. Geophysical and Geochemical Exploration, 2007,31(6):568-571, 576.
|
[15] |
Olson D, Eng P, Geoph P . Technical note: spatial resolution of mobile gravity surveys[R]. Canadian Micro Gravity, 2012.
|
[16] |
王静波, 熊盛青, 周锡华 , 等. 利用Kalman平滑技术估算航空重力测量中的载体垂直加速度[J]. 地球物理学进展, 2010,25(3):968-974.
|
[16] |
Wang J B, Xiong S Q, Zhou X H , et al. Estimation of the vertical acceleration for the airborne gravimetry using Kalman smoothing[J]. Pogress in Geophysics, 2010,25(3):968-974.
|
[17] |
Nancy W, Chris M . Montaj gravity and terrain correction tutorial and user guide[G]. Geosoft, 2006.
|
[18] |
Olson D. GT-1A and GT-2A airborne gravimeters: improvements in design, operation, and processing from 2003 to 2010 [C]//Airborne Gravity 2010 Workshop, ASEGPESA, Expanded Abstracts, 2010.
|
[19] |
熊盛青 . 我国航空重磁技术现状与发展趋势[J]. 地球物理学进展, 2009,24(1):113-117.
|
[19] |
Xiong S Q . Resent situatio development airborne gravity and magnetic survey techniques Chinese[J]. Pogress in Geophysics, 2009,24(1):113-117.
|
[1] |
JIANG Jiu-Ming, AN Zhan-Feng, SHI Lei, MENG Qing-Kui, JIN Jiu-Qiang, WANG Zhi-Bo. A new circuit connection for airborne gravity power supply system[J]. Geophysical and Geochemical Exploration, 2021, 45(6): 1455-1461. |
[2] |
LUO Feng, ZHOU Xi-Hua, HU Ping-Hua, JIANG Zuo-Xi, WANG Guan-Xin, QU Jin-Hong, LI Xing-Su, LI Zhao-Liang, ZHAO Ming. Research on localization of platform-based airborne gravity exploration system[J]. Geophysical and Geochemical Exploration, 2021, 45(5): 1256-1265. |
|
|
|
|