Please wait a minute...
E-mail Alert Rss
 
物探与化探  2025, Vol. 49 Issue (6): 1353-1362    DOI: 10.11720/wtyht.2025.0359
  方法研究信息处理仪器研制 本期目录 | 过刊浏览 | 高级检索 |
基于DEM数据的航空伽马能谱测量地形校正技术
徐睿1,2(), 邓志鹏1,2, 文龙1,2, 余鹏1,2, 李元东1,2, 葛良全1,2()
1.成都理工大学 核技术与自动化工程学院, 四川 成都 610059
2.四川省地学核技术重点实验室, 四川 成都 610059
Terrain correction technology for airborne gamma-ray spectrometry based on DEM data
XU Rui1,2(), DENG Zhi-Peng1,2, WEN Long1,2, YU Peng1,2, LI Yuan-Dong1,2, GE Liang-Quan1,2()
1. College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu 610059, China
2. Sichuan Provincial Key Laboratory of Geoscience and Nuclear Technology, Chengdu 610059, China
全文: PDF(3742 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

航空伽马能谱测量凭借其高效、灵活及可规避人员辐射暴露风险等优势,在矿产地质勘查、环境放射性监测与核应急响应等领域具有重要应用价值。随着无人机技术的快速发展,无人机搭载伽马能谱仪已成为一种更具灵活性与成本效益的低空测量手段。然而,无人机通常在低于40 m的低空飞行时,复杂地形会显著影响对地探测立体角与伽马射线在空气中的衰减程度,从而降低测量结果的准确性。本文针对稀土矿露天采场中采坑、阶梯状开采面、矿石堆与废石堆等典型复杂地形,提出一种基于数字高程模型(DEM)数据的无人机航空伽马能谱测量(UAV)地形校正方法。通过建立微元探测因子模型,结合有限元离散算法,实现对探测区域内地形起伏的定量校正。蒙特卡洛模拟与实地测量结果表明,该方法能有效将山脊、山谷、缓坡和斜坡等地形的伽马射线强度响应误差控制在10%以内,显著提升了低空无人机伽马能谱测量的数据质量。在稀土矿露天采场的无人机航空伽马能谱测量表明,从测区内无人机航空伽马能谱测量经地形校正后,元素含量与90%校正范围内地面伽马能谱测量加权平均元素含量的相对误差为30%以内的点位数,铀含量从未地形校正的53.2%提升至74.3%;钍含量从未地形校正的80.3%提升至93.3%;钾含量从未地形校正的94.7%提升至97.2%。验证了地形校正方法具有较强的实用性和可靠性。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐睿
邓志鹏
文龙
余鹏
李元东
葛良全
关键词 航空伽马能谱测量地形校正无人机测量低空    
Abstract

Aerial gamma spectroscopy measurement has important application value in mineral geological exploration, environmental radiation monitoring, and nuclear emergency response due to its advantages of high efficiency, flexibility, and avoidance of personnel radiation exposure risks. With the rapid development of drone technology, drones equipped with gamma-ray spectrometers have become a more flexible and cost-effective low altitude measurement method. However, drones typically fly at low altitudes below 40 meters, and complex terrain can significantly affect the solid angles of detection and the attenuation of gamma rays in the air, thereby reducing the accuracy of measurement results. This article proposes a terrain correction method for unmanned aerial vehicle (UAV) gamma spectroscopy measurement based on digital elevation model (DEM) data, targeting typical complex terrains such as mining pits, stepped mining faces, ore piles, and waste rock piles in open-pit rare earth mines. By establishing a micro element detection factor model and combining it with finite element discretization algorithm, quantitative correction of terrain undulations in the detection area can be achieved. The Monte Carlo simulation and field measurement results show that this method can effectively control the gamma ray intensity response error of terrain such as ridges, valleys, gentle slopes, and slopes within 10%, significantly improving the data quality of low altitude drone gamma spectrum measurement. The unmanned aerial vehicle (UAV) airborne gamma spectroscopy measurement in the open-pit mining area of rare earth mines shows that the relative error between the element content measured by UAV airborne gamma spectroscopy after terrain correction in the measurement area and the weighted average element content measured by surface gamma spectroscopy within 90% correction range is within 30% of the number of points, and the uranium content has increased from 53.2% without terrain correction to 74.3%; The thorium content has increased from 80.3% without terrain correction to 93.3%; The potassium content has increased from 94.7% without terrain correction to 97.2%. The terrain correction method has been verified to have strong practicality and reliability.

Key wordsaerial gamma spectroscopy measurement    terrain correction    UAV measurement    low-altitude
收稿日期: 2025-09-28      修回日期: 2025-10-31      出版日期: 2025-12-20
ZTFLH:  P631.8  
基金资助:地球深部探测与矿产资源勘查国家科技重大专项(2024ZD1002800)
通讯作者: 葛良全
引用本文:   
徐睿, 邓志鹏, 文龙, 余鹏, 李元东, 葛良全. 基于DEM数据的航空伽马能谱测量地形校正技术[J]. 物探与化探, 2025, 49(6): 1353-1362.
XU Rui, DENG Zhi-Peng, WEN Long, YU Peng, LI Yuan-Dong, GE Liang-Quan. Terrain correction technology for airborne gamma-ray spectrometry based on DEM data. Geophysical and Geochemical Exploration, 2025, 49(6): 1353-1362.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2025.0359      或      https://www.wutanyuhuatan.com/CN/Y2025/V49/I6/1353
Fig.1  点探测器的地面伽马射线强度模型示意
Fig.2  不同校正范围p内探测器飞行高度h与截断距离Ltr的关系@Energy=1 460 keV
Fig.3  起伏地形地形校正系数参数示意
Fig.4  5种典型起伏地形模型
Fig.5  网格划分示意(a)与地形俯视图(b)
核素 40K 214Bi 208Tl
能量/ keV 1460 1764 2614
空气线衰减系数/cm-1 6.42×10-5 5.85×10-5 4.81×10-5
地表介质线衰减系数/cm-1 8.11×10-2 7.45×10-2 6.24×10-2
Table 1  地表介质和空气对40K(1 460 keV)、214Bi(1 764 keV)和208Tl(2 614 keV)3种伽马射线的线衰减系数[17]
平坦地形 山脊地形 缓坡地形 斜坡地形 山谷地形
地形校正前计数响应值 40K@1460 keV 1.41×10-6 5.84×10-7 2.88×10-7 3.44×10-7 1.12×10-6
214Bi@1764 keV 1.32×10-6 5.68×10-7 2.98×10-7 3.14×10-7 9.44×10-7
208Tl@2614 keV 1.14×10-6 5.10×10-7 2.62×10-7 2.96×10-7 8.42×10-7
5种地形上的Wf计算结果 Wf(40K) 4.86×10-3 2.11×10-3 1.07×10-3 1.25×10-3 3.71×10-3
Wf(214Bi) 5.30×10-3 2.38×10-3 1.29×10-3 1.34×10-3 3.93×10-3
Wf(208Tl) 6.33×10-3 2.93×10-3 1.55×10-3 1.69×10-3 4.70×10-3
经地形校正后计数响应值 40K@1460 keV 1.41×10-6 1.35×10-6 1.31×10-6 1.34×10-6 1.46×10-6
214Bi@1764 keV 1.32×10-6 1.26×10-6 1.22×10-6 1.24×10-6 1.27×10-6
208Tl@2614 keV 1.14×10-6 1.10×10-6 1.07×10-6 1.11×10-6 1.13×10-6
地形校正后起伏地形计数响应值相对于平坦地形的相对误差/% 40K@1460 keV - 4.74 7.36 5.28 3.72
214Bi@1764 keV - 3.9 7.0 5.63 3.26
208Tl@2614 keV - 3.35 6.14 2.75 0.53
Table 2  5种地形上的40K(1 460 keV)、214Bi(1 764 keV)和208Tl(2 614 keV)3种伽马射线经地形校正前、后的蒙特卡洛数值模拟计数响应值、Wf计算结果以及经地形校正后起伏地形计数响应值相对于平坦地形的相对误差
能窗 无人机航空伽马能谱测量 地面伽马能谱测量
铀/10-6 钍/10-6 钾/% 铀/10-6 钍/10-6 钾/%
测点数 509 509 509 309 309 309
平均值 62.0 192.5 4.3 63.1 196.2 4.3
均方差 45.3 92.3 0.2 55.4 113.1 0.6
Table 3  测区无人机航空伽马能谱测量和地面伽马能谱测量的铀、钍和钾元素含量统计数据
Fig.6  各采样点的无人机航空伽马能谱测量40K(1 460 keV)(a)、214Bi(1 764 keV)(b)和208Tl(2 614 keV)(c)能窗的
地形校正系数
Fig.7  测区DEM平面图与地面测点分布、测区40K(1 460 keV)在90%校正范围内地形校正系数λ热力图及与相对高度的散点分布
Fig.8  铀元素的UAV元素含量原始平面等值线、地形校正后元素含量平面等值线、地面伽马能谱测量元素含量平面等值线,及其UAV经地形校正前后元素含量与90%校正范围内地面伽马能谱测量加权平均元素含量的相对误差分布
Fig.9  钍元素的UAV元素含量原始平面等值线、地形校正后元素含量平面等值线、地面伽马能谱测量元素含量平面等值线,及其UAV经地形校正前后元素含量与90%校正范围内地面伽马能谱测量加权平均元素含量的相对误差分布
Fig.10  钾元素的UAV元素含量原始平面等值线、地形校正后元素含量平面等值线、地面伽马能谱测量元素含量平面等值线,及其UAV经地形校正前后元素含量与90%校正范围内地面伽马能谱测量加权平均元素含量的相对误差分布
[1] 张翔, 李江坤, 王培建, 等. 我国砂岩型铀矿勘查航空地球物理技术应用进展及展望[J]. 物探化探计算技术, 2025, 47(4):487-496.
[1] Zhang X, Li J K, Wang P J, et al. Progress and prospects of airborn geophysical technology application in sandstone type uranium exploration in China[J]. Computing Techniques for Geophysical and Geochemical Exploration 2025, 47 (4):487-496.
[2] 葛良全, 熊盛青. 航空伽马能谱探测技术与应用[M]. 北京: 科学出版社, 2016.
[2] Ge L Q, Xiong S Q. Airborne gamma ray spectrum detection and applications[M]. Beijing: Science Press, 2016.
[3] 万建华, 熊盛青, 范正国. 航空伽玛能谱数据地形改正方法对比研究及其应用[J]. 地球物理学进展, 2011, 26 (2):641-646.
[3] Wan J H, Xiong S Q, Fan Z G. The comparative study to terrain correction method of airborne gamma-ray spectrometry and its application[J]. Progress in Geophysics 2011, 26 (2):641-646.
[4] Rosa de Almeida G, Coimbra Horbe A M, Peixoto S F, et al. Regolith mapping using airborne gamma-ray spectrometry in central Brazil[J]. Journal of South American Earth Sciences, 2024, 140:104925.
[5] Tourlière B, Perrin J, Le Berre P, et al. Use of airborne gamma-ray spectrometry for kaolin exploration[J]. Journal of Applied Geophysics, 2003, 53 (2):91-102.
[6] 吴霁桐, 葛良全, 熊茂淋, 等. 铀矿勘查中航空伽马能谱测量的特征参数和图像增强处理[J]. 成都理工大学学报:自然科学版, 2025, 52 (1):31-43.
[6] Wu J T, Ge L Q, Xiong M L, et al. Characteristic parameters and image enhancement processing of airborne gamma-ray spectrometry survey in uranium exploration[J]. Journal of Chengdu University of Technology:Natural Sciences Edition, 2025, 52 (1):31-43.
[7] 熊盛青, 毛景文, 刘敏, 等. 航空地球物理勘查技术发展战略研究[J]. 中国工程科学, 2024, 26 (5):104-116.
[7] Xiong S Q, Mao J W, Liu M, et al. Development strategy of airborne geophysical exploration technology[J]. Strategic Study of Chinese Academy of Engineering 2024, 26 (5):104-116.
[8] Macfarlane J W, Payton O D, Keatley A C, et al. Lightweight aerial vehicles for monitoring,assessment and mapping of radiation anomalies[J]. Journal of Environmental Radioactivity, 2014, 136:127-130.
[9] Martin P G, Payton O D, Fardoulis J S, et al. The use of unmanned aerial systems for the mapping of legacy uranium mines[J]. Journal of Environmental Radioactivity, 2015, 143:135-140.
[10] Parshin A, Morozov V, Snegirev N, et al. Advantages of gamma-radiometric and spectrometric low-altitude geophysical surveys by unmanned aerial systems with small scintillation detectors[J] .Applied Sciences, 2021, 11(5):2247.
[11] Amestoy J, Meslin P Y, Richon P, et al. Effects of environmental factors on the monitoring of environmental radioactivity by airborne gamma-ray spectrometry[J]. Journal of Environmental Radioactivity, 2021, 237:106695.
[12] Vander V S, Limburg J, Koomans R L, et al. Footprint and height corrections for UAV-borne gamma-ray spectrometry studies[J]. Journal of Environmental Radioactivity, 2021, 231:106545.
[13] Vander V S, Limburg J, Koomans R L, et al. Optimizing gamma-ray spectrometers for UAV-borne surveys with geophysical applications[J]. Journal of Environmental Radioactivity, 2021, 237:106717.
[14] Altfelder S, Preugschat B, Matos M, et al. Upscaling ground-based backpack gamma-ray spectrometry to spatial resolution of UAV-based gamma-ray spectrometry for system validation[J]. Journal of Environmental Radioactivity, 2024, 273:107382.
[15] Xia J, Song B, Gu Y, et al. Application of advanced spectral-ratio radon background correction in the UAV-borne gamma-ray spectrometry[J]. Nuclear Engineering and Technology, 2023, 55(8):2927-2934.
[16] 刘秋实, 张庆贤, 杨海, 等. 航空γ能谱测量地形校正方法研究[J]. 核技术, 2021, 44(9):76-83.
[16] Liu Q S, Zhang Q X, Yang H, et al. Research on terrain correction method of airborne γ spectrometry[J]. Nuclear Techniques 2021, 44(9):76-83.
[17] Deng Z P, Ge L Q, Wen L, et al. Height and terrain correction of UAV radioactive measurements based on DEM data[J]. Journal of Environmental Radioactivity, 2025, 285:107655.
[1] 周钟航, 张莹莹. 山峰对电性源地面瞬变电磁响应的影响及校正方法[J]. 物探与化探, 2023, 47(5): 1236-1249.
[2] 张菲菲, 王万银, 李倩, 王林, 马静. DEM网格间距及校正半径对重力地形校正的影响[J]. 物探与化探, 2023, 47(3): 597-607.
[3] 徐志敏, 昝崇信, 肖晓, 李晋, 辛会翠. 角域地形点源电场解析计算及其在高密度电阻率法地改中的应用[J]. 物探与化探, 2014, (3): 534-538.
[4] 米耀辉, 范正国, 周锡华, 万建华. 航空伽马能谱测量地形影响改正实现方法[J]. 物探与化探, 2013, 37(6): 1034-1038.
[5] 万建华, 熊盛青, 范正国. 航空伽马能谱测量方法技术现状与展望[J]. 物探与化探, 2012, 36(3): 386-391.
[6] 范涛. 煤田电法勘探中的TEM地形校正方法[J]. 物探与化探, 2012, 36(2): 246-249.
[7] 王志宏, 山科社. 电磁法测量的地形影响及校正方法[J]. 物探与化探, 2011, 35(3): 364-367.
[8] 王庆乙, 行英弟, 蒋彬, 徐立忠. MAMSS-1超低空高精度航磁系统的研制[J]. 物探与化探, 2010, 34(6): 712-716.
[9] 金戈, 吴其反, 范正国, 王金龙, 张文志, 张积运, 江民忠. 航空伽马能谱测量工作人员在仪器标定及 实验过程中受照剂量的评估[J]. 物探与化探, 2008, 32(4): 421-423.
[10] 张文斌, 于长春, 周锡华. 一种新的航空伽马能谱测量数据改正方法[J]. 物探与化探, 2007, 31(2): 143-148.
[11] 周坚鑫, 周锡华, 王南萍, 余钦范. 航空伽马能谱测量在突发核事件中的应用[J]. 物探与化探, 2006, 30(6): 480-481,487.
[12] 李淑玲, 孙鸿雁, 林天亮. 可控源音频大地电磁考古资料的 地形校正、解释方法效果对比[J]. 物探与化探, 2005, 29(6): 541-544,556.
[13] 徐东宸, 王卫平. 山东黄河口地区环境放射性辐射水平及评价[J]. 物探与化探, 2000, 24(3): 178-183.
[14] 杨华, 李金铭. 起伏地形对近矿围岩充电法影响规律的数值模拟研究[J]. 物探与化探, 1999, 23(3): 202-210215.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com