Please wait a minute...
E-mail Alert Rss
 
物探与化探  2025, Vol. 49 Issue (1): 177-188    DOI: 10.11720/wtyht.2025.1183
  方法研究信息处理仪器研制 本期目录 | 过刊浏览 | 高级检索 |
考虑孔隙形状的碳酸盐岩储层流体综合识别方法研究及应用——以鄂尔多斯盆地奥陶系马家沟组四段为例
王永刚1,2(), 姚宗惠1,2, 杨骐羽3,4, 李景叶3,4, 宋炜3,4
1.中国石油长庆油田分公司 勘探开发研究院,陕西 西安 710018
2.低渗透油气田勘探开发国家工程实验室,陕西 西安 710018
3.油气资源与探测国家重点实验室,北京 102249
4.中国石油大学(北京) 地球物理学院,北京 102249
A comprehensive fluid identification method for carbonate reservoirs considering pore shapes: A case study of the fourth member of the Ordovician Majiagou Formation,Ordos Basin
WANG Yong-Gang1,2(), YAO Zong-Hui1,2, YANG Qi-Yu3,4, LI Jing-Ye3,4, SONG Wei3,4
1. Research Institute of Exploration and Development,Changqing Oilfield Company,PetroChina,Xi'an 710018,China
2. National Engineering Laboratory for Exploration and Development of Low-Permeability Oil & Gas Fields,Xi'an 710018,China
3. State Key Laboratory of Petroleum Resources and Prospecting,Beijing 102249,China
4. College of Geophysics,China University of Petroleum(Beijing),Beijing 102249,China
全文: PDF(7816 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

鄂尔多斯盆地马四段白云岩储层具有厚度较薄、致密、孔隙形状复杂、非均质性显著、地震响应相对较弱的特征。储层地震预测机理尚存疑,流体识别具有一定困难。传统的单一属性地球物理方法未能准确预测流体,因此我们以对孔隙形状与孔隙连通性的综合考虑为基础,借助岩石物理建模和分析,结合波动理论的叠前AVO反演、流体因子的频变AVO反演与基于PNN的孔隙结构参数预测,构建了一种新的综合流体识别方法。该方法全面考虑了弹性参数、物性参数与频散属性的影响,取得了显著的效果。相对于传统单一属性流体识别方法,综合流体识别方法展现出更高的精度,尤其在含气层区域表现出显著的指示效果,充分验证了其在流体识别领域的有效性,具备广泛推广和应用的潜力。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王永刚
姚宗惠
杨骐羽
李景叶
宋炜
关键词 马家沟组四段岩石物理模型孔隙形状频散属性流体识别    
Abstract

The dolomite reservoirs of the fourth member of the Majiagou Formation in the Ordos Basin are characterized by thin layers,tightness,complex pore shapes,strong heterogeneity,and relatively weak seismic responses.The mechanisms behind the seismic prediction of the reservoirs remains uncertain, making fluid identification challenging.Traditional geophysical methods based on a single attribute fail to accurately predict fluids.Therefore,by comprehensively accounting for the pore shapes and connectivity,this study proposed a new fluid identification method using petrophysical modeling and analysis,as well as wave theory-based prestack AVO inversion,frequency-dependent AVO inversion of fluid factors,and probabilistic neural network(PNN)-based prediction of pore structure parameters.This method,comprehensively considering the impacts of elastic parameters,physical parameters,and dispersion properties,achieve remarkable results.Compared to traditional single-attribute fluid identification method,the proposed method demonstrates higher accuracy,particularly for gas-bearing areas,fully verifying its effectiveness in fluid identification and highlighting its potential for widespread application.

Key wordsthe fourth member of the Majiagou Formation    rock physical model    shape of pore    dispersion property    fluid recognition
收稿日期: 2024-05-07      修回日期: 2024-11-04      出版日期: 2025-02-20
ZTFLH:  P631.4  
基金资助:中国石油集团公司攻关性应用性科技专项“海相碳酸盐岩油气规模增储上产与勘探开发技术研究”课题4“复杂碳酸盐岩地球物理评价关键技术研究”(2023ZZ16YJ04)
作者简介: 王永刚(1980-),男,汉族,陕西扶风人,硕士研究生学历,高级工程师,主要研究方向为地震资料解释、地震反演及储层预测等。Email:wangyg_cq@petrochina.com.cn
引用本文:   
王永刚, 姚宗惠, 杨骐羽, 李景叶, 宋炜. 考虑孔隙形状的碳酸盐岩储层流体综合识别方法研究及应用——以鄂尔多斯盆地奥陶系马家沟组四段为例[J]. 物探与化探, 2025, 49(1): 177-188.
WANG Yong-Gang, YAO Zong-Hui, YANG Qi-Yu, LI Jing-Ye, SONG Wei. A comprehensive fluid identification method for carbonate reservoirs considering pore shapes: A case study of the fourth member of the Ordovician Majiagou Formation,Ordos Basin. Geophysical and Geochemical Exploration, 2025, 49(1): 177-188.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2025.1183      或      https://www.wutanyuhuatan.com/CN/Y2025/V49/I1/177
Fig.1  井1合成记录
Fig.2  综合流体因子预测的流程
Fig.3  考虑连通孔隙与孔隙形状的碳酸盐岩岩石物理模型
Fig.4  基于岩石物理模型的孔隙参数对弹性模量影响分析
a—连通孔隙变化情况下孔隙参数与体积模量关系;b—连通孔隙变化情况下孔隙参数与剪切模量关系;c—连通孔隙变化情况下孔隙参数与密度关系;d—软孔含量变化情况下孔隙参数与体积模量关系;e—软孔含量变化情况下孔隙参数与剪切模量关系;f—软孔含量变化情况下孔隙参数与密度关系
Fig.5  横波速度预测结果
a—质控井I1横波预测结果;b—质控井I2横波预测结果;c—预测井1横波预测结果;d—预测井2横波预测结果
Fig.6  孔隙形状参数(软孔含量)敏感性分析
a—纵横波速度比与体积模量散点分析;b—剪切模量与泊松比量散点分析;c—体积模量与泊松比散点分析;d—纵波速度与横波速度散点分析;e—体积模量、纵波速度和泊松比散点分析;f—纵波速度、横波速度和纵波模量散点分析;g—体积模量、密度和纵横波速度比散点分析
Fig.7  PCNN模型流程
Fig.8  LP-CNN多属性融合方法流程(以两种属性为例)
Fig.9  模型储层(a)及含气饱和度(b)示意
Fig.10  地震正演结果
Fig.11  单属性结果示意
a—纵波速度差(归一化结果);b—频散因子(归一化结果);c—孔隙结构参数
Fig.12  多属性融合预测结果(归一化结果)
Fig.13  马四段预测结果示意
[1] 付金华, 刘新社, 魏柳斌, 等. 鄂尔多斯盆地奥陶系盐下马家沟组四段天然气勘探突破及意义[J]. 中国石油勘探, 2022, 27(2):47-58.
doi: 10.3969/j.issn.1672-7703.2022.02.005
[1] Fu J H, Liu X S, Wei L B, et al. Natural gas exploration breakthrough and significance of the fourth Member of the Ordovician subsalt Majiagou Formation in Ordos Basin[J]. China Petroleum Exploration, 2012, 27(2):47-58.
[2] 何海清, 郭绪杰, 赵振宇, 等. 鄂尔多斯盆地奥陶系盐下马四段天然气成藏新认识及勘探重大突破[J]. 石油勘探与开发, 2022, 49(3):429-439.
doi: 10.11698/PED.20210659
[2] He H Q, Guo X J, Zhao Z Y, et al. New understanding and exploration breakthrough of natural gas accumulation in the Fourth Member of Yanxama,Ordovician,Ordos Basin[J]. Petroleum Exploration and Development, 2022, 49(3):429-439.
[3] Smith G C, Gidlow P M. Weighted stacking for rock property estimation and detection of gas[J]. Geophysical Prospecting, 2010, 35(9):993-1014.
[4] Goodway B, Chen T, Downton J. Improved AVO fluid detection and lithology discrimination using Lamé petrophysical parameters;“λρ”,“μρ”,& “λ/μ fluid stack”,from P and S inversions[C]// SEG Technical Program Expanded Abstracts 1997, Society of Exploration Geophysicists,1997:183-186.
[5] Smith G C, Gidlow M. The fluid factor angle and the crossplot angle[C]// SEG Technical Program Expanded Abstracts 2003,Society of Exploration Geophysicists, 2003:185-188.
[6] Russell B, Hedlin K, Hilterman F J, et al. Fluid-property discrimination with AVO:A Biot-Gassmann perspective[J]. Geophysics, 2003, 68(1):29-39.
[7] Russell B H, Gray D, Hampson D P, et al. Linearized AVO and poroelasticity[J]. CREWES Research Report, 2011, 76(3):C19-C29.
[8] 宁中华, 何振华, 黄德基. 基于地震资料的高灵敏流体识别[J]. 石油地球物理勘探, 2006, 45(3):239-241.
[8] Ning Z H, He Z H, Huang D J. High sensitive fluid identification based on seismic data[J]. Geophysical Prospecting for Petroleum, 2006, 45(3):239-241.
[9] 杨童. 基于EI-Fatti弹性波阻抗反演的流体识别[J]. 物探与化探, 2012, 36(3):360-366.
[9] Yang T. Fluid identification based on EI-Fatti elastic impedance inversion[J]. Geophysical and Geochemical Exploration, 2012, 36(3):360-366.
[10] 黄捍东, 汪佳蓓, 郭飞. 敏感参数分析在叠前反演流体识别中的应用[J]. 物探与化探, 2012, 36(6):941-946.
[10] Huang H D, Wang J B, Guo F. The application of sensitive parameters analysis to fluid identification based on pre-stack inversion[J]. Geophysical and Geochemical Exploration, 2012, 36(6):941-946.
[11] 李红梅. 弹性参数直接反演技术在储层流体识别中的应用[J]. 物探与化探, 2014, 38(5):970-975.
[11] Li H M. The application of elastic parameters direct inversion to reservoir fluid identification[J]. Geophysical and Geochemical Exploration, 2014, 38(5):970-975.
[12] 李灿, 归平军. 纵横波速度比在东胜气田致密低渗储层流体识别中的应用[J]. 物探与化探, 2019, 43(3):536-542.
[12] Li C, Gui P J. Vp/Vs applied to fluid identification of tight sandstone reservoir of Dongsheng gas field[J]. Geophysical and Geochemical Exploration, 2019, 43(3):536-542.
[13] 李英, 秦德海. 基于流体替代的敏感弹性参数优选及流体识别在渤海B油田的应用[J]. 物探与化探, 2018, 42(4):662-667.
[13] Li Y, Qin D H. The optimization of sensitive elastic parameters based on fluid substitution and the application of fluid identification to Bohai B Oilfield[J]. Geophysical and Geochemical Exploration, 2018, 42(4):662-667.
[14] Yin X, Zhang S. Bayesian inversion for effective pore-fluid bulk modulus based on fluidmatrix decoupled amplitude variation with offset approximation[J]. Geophysics, 2014, 79(5):221-232.
[15] 付金华, 于洲, 李程善, 等. 鄂尔多斯盆地东部米探1井奥陶系马四段天然气勘探新发现及勘探方向[J]. 天然气工业, 2021, 41(12):17-27.
[15] Fu J H, Yu Z, Li C S, et al. New discoveries and exploration directions of natural gas in the fourth Member of the Ordovician Maji Formation in Well Mitan1,Eastern Ordos Basin[J]. Natural Gas Industry, 2021, 41(12):17-27.
[16] 丁振纯, 高星, 董国栋, 等. 鄂尔多斯盆地奥陶系盐下白云岩储层特征、成因及分布[J]. 海相油气地质, 2021, 26(1):16-24.
[16] Ding Z C, Gao X, Dong G D, et al. Characteristics,genesis and distribution of Ordovician subsalt dolomite reservoir in Ordos Basin[J]. Marine Origin Petroleum Geology, 2021, 26(1):16-24.
[17] Fryer G J. A slowness approach to the reflectivity method of seismogram synthesis[J]. Geophysical Journal International, 2007, 63(3):747-758.
[18] Ruiz F, Cheng A. A rock physics model for tight gas sand[J]. The Leading Edge, 2010, 29(12):1484-1489.
[19] 杨骐羽, 李景叶, 吴凡, 等. 考虑软矿物纵横比的页岩岩石物理建模及其应用[J]. 物探与化探, 2024, 48(1):98-104.
[19] Yang Q Y, Li J Y, Wu F, et al. A petrophysical model of shales considering soft-mineral aspect ratios and its application[J]. Geophysical and Geochemical Exploration, 2024, 48(1):98-104.
[20] 王璞, 吴国忱. 基于自相容近似的致密储层岩石物理建模[J]. 地球物理学进展, 2015, 30(5):2233-2238.
[20] Wang P, Wu G C. The rock physics modeling for tight reservoir based on the self-consistent approximation[J]. Progress in Geophysics, 2015, 30(5):2233-2238.
[21] Hill R. Elastic properties of reinforced solids:Some theoretical principles[J]. Journal of the Mechanics and Physics of Solids, 1963, 11(5):357-372.
[22] Wood A B, Lindsay R B. A textbook of sound[J]. Physics Today, 1956, 9(11):37.
[23] 薄昕, 徐旺林, 陈小宏, 等. 基于局部熵的 LP-PCNN 多属性融合裂缝预测方法[J] .石油物探, 2022, 61(5):821-829.
doi: 10.3969/j.issn.1000-1441.2022.05.007
[23] Bo X, Xu W L, Chen X H, et al. LP-PCNN multi-attribute fusion fracture prediction method based on local entropy[J]. Geophysical Prospecting for Petroleum, 2022, 61(5):821-829.
doi: 10.3969/j.issn.1000-1441.2022.05.007
[1] 刘伟男, 管耀, 刘道理, 石磊, 宋伟. 低对比度油层测录井综合识别方法研究与应用——以珠江口盆地陆丰油田为例[J]. 物探与化探, 2024, 48(3): 573-583.
[2] 张婧, 汪勇, 赵慧言, 衡德, 黄君, 张晓丹, 王文文, 贺燕冰. 基于全局自适应MCMC算法的裂缝型储层缝隙流体因子叠前地震反演[J]. 物探与化探, 2024, 48(1): 105-112.
[3] 杨骐羽, 李景叶, 吴凡, 李文瑾, 崔津铭. 考虑软矿物纵横比的页岩岩石物理建模及其应用[J]. 物探与化探, 2024, 48(1): 98-104.
[4] 刘浩杰, 陈雨茂, 王延光, 宗兆云, 吴国忱, 侯庆杰. 粘弹介质叠前四参数同步反演及应用[J]. 物探与化探, 2021, 45(1): 140-148.
[5] 李英, 秦德海. 基于流体替代的敏感弹性参数优选及流体识别在渤海B油田的应用[J]. 物探与化探, 2018, 42(4): 662-667.
[6] 田瀚, 杨敏. 碳酸盐岩缝洞型储层测井评价方法[J]. 物探与化探, 2015, 39(3): 545-552.
[7] 李红梅. 弹性参数直接反演技术在储层流体识别中的应用[J]. 物探与化探, 2014, 38(5): 970-975.
[8] 黄捍东, 汪佳蓓, 郭飞. 敏感参数分析在叠前反演流体识别中的应用[J]. 物探与化探, 2012, 36(6): 941-946.
[9] 杨童. 基于EI-Fatti弹性波阻抗反演的流体识别[J]. 物探与化探, 2012, 36(3): 360-366.
[10] 张广智, 郑静静, 印兴耀, 张作胜, 武国虎. 基于Curvelet变换的角度流体因子提取技术[J]. 物探与化探, 2011, 35(4): 505-510.
[11] 李国福, 李录明, 李才明. 三维定量交会技术在流体预测中的研究[J]. 物探与化探, 2011, 35(3): 398-401.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com