Please wait a minute...
E-mail Alert Rss
 
物探与化探  2023, Vol. 47 Issue (4): 856-867    DOI: 10.11720/wtyht.2023.1338
  地质调查资源勘查 本期目录 | 过刊浏览 | 高级检索 |
多维度化探异常研究在黔西南者相金矿床深部成矿预测中的应用
邰文星1(), 杨成富1(), 靳晓野2, 邵云彬1, 刘光富1, 赵平1, 王泽鹏1, 谭礼金1
1.贵州省地质矿产勘查开发局 一0五地质大队,贵州 贵阳 550018
2.中国地质大学(武汉) 资源学院,湖北 武汉 430074
Application of the multi-dimensional study of geochemical anomalies in deep metallogenic prediction of the Zhexiang gold deposit in southwestern Guizhou, China
TAI Wen-Xing1(), YANG Cheng-Fu1(), JIN Xiao-Ye2, SHAO Yun-Bin1, LIU Guang-Fu1, ZHAO Ping1, WANG Ze-Peng1, TAN Li-Jin1
1. No. 105 Geological Team, Guizhou Bureau of Geology and Mineral Exploration and Development, Guiyang 550018, China
2. School of Earth Resources, China University of Geosciences (Wuhan), Wuhan 430074, China
全文: PDF(8849 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

由于缺少有效的深部勘查技术手段,如何在黔西南灰家堡背斜已探明典型矿床的深部及外围获取成矿作用信息,从而扩大找矿规模,成为地勘单位工作的重点和难点。本文以黔西南地区灰家堡背斜东侧的者相金矿床为例,为了真实反映深部地质异常特征,以深部含矿地层——龙潭组为研究对象,从勘查线剖面、纵剖面及深部三维平面3个维度出发,对深部Au异常进行全方位的钻孔化探异常信息提取,总结化探异常分布规律,对者相金矿深部成矿潜力进行评价。综合利用迭代法结合直方图法和钻孔样长加权平均品位法对深部钻孔化探数据进行处理,获得矿区龙潭组地层Au异常背景值范围为(0.04~0.12) ×10-6,异常下限约为0.24×10-6。两种方法处理后的等值线异常图显示:Au异常分布特征与深部矿体特征具有较高的吻合性,所有剖面的Au高异常分布范围和已查明含矿带(体)的形态高度吻合,大范围且未闭合的Au高异常与龙潭组一段中的F20断层倾向分布一致,Au异常三维分布特征显示为矿区中部近EW向分布的高异常带与灰家堡背斜轴部走向一致。综合多维度的化探异常及研究区地质特征,查明F20断层为矿区的主要导矿和控矿断裂,矿区外围的北边、东边深部具有较大的成矿和找矿潜力,据此圈定了两个找矿靶区,建议进行工程验证。本次研究为指导灰家堡其他矿区的矿产勘查起到了示范作用,研究方法的可行性对其他矿区的化探异常研究具有借鉴作用。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
邰文星
杨成富
靳晓野
邵云彬
刘光富
赵平
王泽鹏
谭礼金
关键词 成矿预测龙潭组深部多维异常者相金矿样长加权平均品位法找矿靶区    
Abstract

Due to the lack of effective deep exploration techniques, it has become a key and difficult task to expand the scale of prospecting by obtaining the mineralization information in the deep and peripheral areas of the proven typical deposits of the Huijiabao anticline in southwestern Guizhou. To truly reflect the characteristics of deep geological anomalies, this study investigated the deep ore-bearing Longtan Formation of the Zhexiang gold deposit in the eastern Huijiabao anticline. The information on deep Au anomalies was extracted through geochemical exploration in boreholes of any azimuth according to the profiles, longitudinal profiles, and deep 3D planes of survey lines. Then this study summarized the distribution patterns of geochemical anomalies and evaluated the deep metallogenic potential of the Zhexiang gold deposit. The geochemical data obtained from deep boreholes were processed using the iterative histogram method and the sample length weighted average grade method, respectively. The results show that the Longtan Formation in the mining area had Au anomaly background values of (0.04~0.12)×10-6 and an anomaly threshold of about 0.24×10-6. As revealed by the anomaly contour maps generated from the processed data using the above two methods, the distribution characteristics of Au anomalies are in high agreement with those of deep ore bodies, and the distribution ranges of high Au anomalies in all profiles are highly consistent with the morphologies of the proved ore-bearing zones (bodies). Moreover, the large-scale and unclosed high Au anomalies follow the dip direction of fault F20 in the first member of the Longtan Formation. The 3D distribution of Au anomalies shows that the nearly EW-directed high anomaly zone in the central mining area is consistent with the axial region of the Huijiapu anticline. As indicated by the analysis of the multi-dimensional geochemical anomalies and the geological characteristics of the study area, fault F20 is the main ore transmitting and controlling fault in the mining area, and the northern and eastern deep parts around the mining area have great metallogenic and prospecting potential. In addition, two prospecting targets were delineated, needing further engineering verification. This study plays an important demonstration role in guiding the exploration of other mining areas in the Huijiabao anticline. The feasible study methods can be referenced for the study of geochemical anomalies in other mining areas.

Key wordsmetallogenic prediction    Longtan formation    deep multidimensional anomaly    Zhexiang gold deposit    sample length weighted average grade method    prospecting target
收稿日期: 2022-07-03      修回日期: 2022-12-08      出版日期: 2023-08-20
ZTFLH:  P632  
基金资助:贵州省科技计划项目(黔地矿科合)([2021]1号);贵州省科技计划项目(黔地矿科合)([2020]7号);贵州省地质勘查资金项目(520000214TLCOG7DGTNRG)
通讯作者: 杨成富(1984-),男,贵州省威宁县人,正高级工程师,博士。Email:562933581@qq.com
作者简介: 邰文星(1993-),男,苗族,贵州省台江县人,中级工程师,硕士。Email:1436552290@qq.com
引用本文:   
邰文星, 杨成富, 靳晓野, 邵云彬, 刘光富, 赵平, 王泽鹏, 谭礼金. 多维度化探异常研究在黔西南者相金矿床深部成矿预测中的应用[J]. 物探与化探, 2023, 47(4): 856-867.
TAI Wen-Xing, YANG Cheng-Fu, JIN Xiao-Ye, SHAO Yun-Bin, LIU Guang-Fu, ZHAO Ping, WANG Ze-Peng, TAN Li-Jin. Application of the multi-dimensional study of geochemical anomalies in deep metallogenic prediction of the Zhexiang gold deposit in southwestern Guizhou, China. Geophysical and Geochemical Exploration, 2023, 47(4): 856-867.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2023.1338      或      https://www.wutanyuhuatan.com/CN/Y2023/V47/I4/856
Fig.1  黔西南灰家堡背斜矿田分布(a)及者相金矿区地质(b)(按文献[3]修编)
1—第四系浮土;2—三叠系嘉陵江组第一段二亚段黏土岩;3—三叠系嘉陵江组第一段一亚段白云岩夹灰岩;4—三叠系夜郎组第三段钙质黏土岩;5—三叠系夜郎组第二段生物碎屑灰岩;6—正断层; 7—逆断层;8—背斜;9—金矿床;10—勘查线
Fig.2  者相金矿床龙潭组地层钻孔采样三维分布
Fig.3  6条勘查线Au异常背景值正态分布—直方图
勘查线 624线 620线 616线 608线 600线 609线
迭代次数 3 2 2 2 3 2
标准离差/10-6 0.075 0.079 0.067 0.071 0.072 0.086
平均值/10-6 0.090 0.084 0.081 0.091 0.106 0.084
背景值/10-6 0.049~0.106 0.040~0.103 0.048~0.084 0.032~0.096 0.051~0.120 0.030~0.123
异常下限/10-6 0.240 0.242 0.215 0.233 0.250 0.256
Table 1  6条勘查线剖面化探异常背景值及下限值
Fig.4  者相金矿6条勘查线Au异常背景值—异常下限值变化规律
Fig.5  者相金矿6条勘查线中Au异常分布
Fig.6  者相金矿床龙潭组矿体分布示意(按文献[3]修编)
1—钻孔;2—矿体及编号;3—省略线;4—地质界线;5—(推断)断裂;6—二叠系茅口组;7—构造蚀变体;8—二叠系龙潭组;9—二叠系长兴组和大隆组;10—三叠系夜郎组;11—三叠系嘉陵江组
Fig.7  624~625纵剖面Au异常背景值正态分布—直方图
Fig.8  624~625纵剖面Au异常与矿体特征对比
钻孔 总样长/
m
样品数 线金
属量
Au加
权平均
品位/
10-6
钻孔 总样长/
m
样品数 线金
属量
Au加
权平均
品位/
10-6
钻孔 总样长/
m
样品数 线金
属量
Au加
权平均
品位/
10-6
ZK40764 229.45 210 929.53 0.41 ZK60064 165.58 161 294.47 0.18 ZK60801 208.56 204 122.45 0.06
ZK41924 244.45 226 596.89 0.24 ZK60024 252.95 236 914.03 0.36 ZK60824 184.50 175 466.04 0.25
ZK41916 197.72 188 259.01 0.13 ZK43901 282.09 256 397.89 0.14 ZK60832 252.88 249 533.41 0.21
ZK42308 261.40 248 589.34 0.23 ZK60924 395.53 380 1156.56 0.29 ZK60848 163.18 163 210.14 0.13
ZK42301 254.81 240 738.35 0.29 ZK43916 287.45 269 559.61 0.20 ZK60840 175.31 164 372.23 0.21
ZK42309 144.00 139 408.61 0.28 ZK60940 295.15 286 694.79 0.24 ZK43941 214.88 196 597.61 0.28
ZK42733 369.54 334 1229.94 0.33 ZK60908 346.72 359 1147.11 0.33 ZK42380 128.84 122 170.49 0.13
ZK40780 252.70 227 209.14 0.08 ZK43932 219.44 205 508.39 0.23 ZK60440 197.92 193 223.81 0.11
ZK41564 259.96 237 421.62 0.16 ZK43948 211.29 199 486.53 0.23 ZK60448 195.39 184 257.33 0.13
ZK42324 188.91 173 177.30 0.09 ZK61708 241.26 230 326.99 0.14 ZK60456 172.32 172 379.21 0.22
ZK42316 265.88 242 1199.16 0.45 ZK45501 203.65 191 691.86 0.34 ZK60432 270.21 259 380.15 0.14
ZK62016 196.87 189 409.46 0.21 ZK62516 335.30 321 832.74 0.25 ZK60424 246.10 239 1153.89 0.47
ZK62024 201.76 189 200.19 0.10 ZK45516 189.12 177 459.33 0.24 ZK42396 235.92 218 563.21 0.24
ZK45301 268.37 252 745.93 0.28 ZK40708 176.52 169 272.65 0.15 ZK43917 315.30 286 1468.45 0.47
ZK41580 271.83 255 323.68 0.12 ZK40716 296.61 269 509.79 0.17 ZK60001 395.31 365 684.65 0.17
ZK42332 244.74 235 82.53 0.03 ZK40717 253.44 255 356.46 0.14 ZK60048 175.49 167 268.81 0.15
ZK61601 311.69 305 561.75 0.18 ZK40720 155.87 151 396.81 0.26 ZK41132 200.35 182 294.94 0.15
ZK61616 194.82 181 243.22 0.13 ZK40724 146.50 122 168.82 0.12 ZK41140 130.80 123 203.31 0.16
ZK61624 234.21 230 729.29 0.31 ZK40732 197.55 190 763.95 0.39 ZK41501 336.71 308 363.42 0.11
ZK61632 166.74 158 611.43 0.37 ZK40740 150.05 143 357.78 0.24 ZK41508 99.76 92 266.52 0.27
ZK42348 329.20 281 840.39 0.26 ZK40748 305.67 287 921.37 0.30 ZK41516 274.65 247 633.97 0.23
ZK61216 254.63 241 367.28 0.14 ZK41108 99.41 93 78.48 0.08 ZK41520 114.39 110 815.82 0.71
ZK61224 205.88 197 429.88 0.21 ZK41116 221.30 214 174.94 0.08 ZK41524 186.61 174 914.88 0.49
ZK61240 238.77 249 437.91 0.18 ZK41120 197.52 187 662.82 0.34 ZK41532 248.35 230 404.43 0.16
ZK61232 247.55 240 634.79 0.26 ZK41124 150.55 140 263.39 0.18 ZK41548 155.85 255 392.24 0.25
ZK42364 270.69 250 821.25 0.30 ZK41128 135.57 131 414.28 0.31 ZK41901 218.79 213 291.80 0.13
ZK41904 197.55 255 448.63 0.23 ZK41909 141.37 135 480.25 0.34
ZK41908 269.65 254 836.51 0.31 ZK42317 194.47 199 389.46 0.20
Table 2  者相金矿深部龙潭组地层各个钻孔样长加权平均品位值
Fig.9  者相金矿深部龙潭组地层Au三维异常
Fig.10  者相金矿床深部构造控矿模式
1—矿体;2—断裂;3—灰岩;4—粉砂岩;5—黏土岩;6—粉砂质黏土岩;7—热液流向;8—蚀变体
Fig.11  者相金矿床外围找矿靶区
[1] 张瑜, 夏勇, 王泽鹏, 等. 贵州簸箕田金矿单矿物稀土元素和同位素地球化学特征[J]. 地学前缘, 2010, 17(2):385-395.
[1] Zhang Y, Xia Y, Wang Z P, et al. Geochemical characteristics of rare earth elements and isotopes of single minerals in the Bojitian gold deposit,Guizhou Province[J]. Earth Science Frontiers, 2010, 17(2):385-395.
[2] Jin X Y, Yang C F, Liu J Z, et al. Source and evolution of the ore-forming fluids of Carlin-type gold deposit in the Youjiang Basin,South China: Evidences from solute data of fluid inclusion extracts[J]. Journal of Earth Science, 2021, 32(1):185-194.
doi: 10.1007/s12583-020-1055-x
[3] 邰文星, 周琦, 杨成富, 等. 黔西南者相金矿床三维地质可视化建模及应用[J/OL]. 武汉:地球科学: 2022[2022-07-01]. http://kns.cnki.net/kcms/detail/42.1874.p.20220407.1643.006.html.
[3] Tai W X, Zhou Q, Yang C F, et al. Modeling and application of 3D geological visualization of gold deposits in Zhexiang gold deposit,Southwest Guizhou Province[J/OL]. Wuhan:Earth Science: 2022[2022-07-01]. http://kns.cnki.net/kcms/detail/42.1874.p.20220407.1643.006.html.
[4] 何金坪. 贵州省贞丰县者相二金矿勘探报告[R]. 贵州省地质矿产勘查开发局一0五地质大队, 2021.
[4] He J P. Report on orebody in Zhexiang No.2 gold deposit,Zhenfeng County,Guizhou Province[R]. The 105 Geological Team of Guizhou Geological Mineral Exploration and Development Bureau, 2021.
[5] 何邵麟, 曾昭光, 罗明学, 等. 黔西南金矿勘查地球化学30年:回顾与展望[J]. 物探与化探, 2008, 32(5):461-464.
[5] He S L, Zeng Z G, Luo M X, et al. Geochemistry of gold deposits in southwest Guizhou in the past 30 years: Retrospect and prospect[J]. Geophysical and Geochemical Exploration, 2008, 32(5):461-464.
[6] 刘建中, 王泽鹏, 宋威方, 等. 中国南方卡林型金矿多层次构造滑脱成矿系统的构建[C]// 首届全国矿产勘查大会论文集, 2021:1061-1066.
[6] Liu J Z, Wang Z P, Song W F, et al. Geological characteristics and prospecting potential of Carlin-gold deposit in South China[C]// Prospecting of the First National Mineral Exploration Conference, 2021:1061-1066.
[7] 阮天健. 鄂尔多斯盆地靖边新桥—横山麒麟沟地区油气地表地球化学勘探成果总结报告[R]. 中国地质大学(武汉), 2004.
[7] Ruan T J. Summary report of oil and gas surface geochemical exploration results in Xinqiao-Hengshan Qilingou Area,Jingbian,Ordos Basin[R]. China University of Geosciences(Wuhan), 2004.
[8] 李惠, 张国义, 禹斌, 等. 构造叠加晕找盲矿法及其在矿山深部找矿效果[J]. 地学前缘, 2010, 17(1):287-293.
[8] Li H, Zhang G Y, Yu B, et al. Structual superimposed halo blind ore prospecting method and its prospecting effect in deep mine[J]. Earth Science Frontiers, 2010, 17(1):287-293.
[9] 徐良易. 黔西南水银洞金矿床构造地球化学特征及其在隐伏矿床找矿中应用研究[D]. 贵阳: 贵州大学, 2016.
[9] Xu L Y. Ectonic and geochemical characteristics of the Shuiyindong gold deposit in southwestern Guizhou Province and its application in prospecting for concealed deposits[D]. Guiyang: Guizhou University, 2016.
[10] 李惠, 禹斌, 李德亮, 等. 胶东石英脉型金矿床深部盲矿预测的构造叠加晕模型[J]. 矿床地质, 2010, 29(S1):711-712.
[10] Li H, Yu B, Li D L, et al. Structual superimposed halo model for blind ore prediction of deep quartz vein type gold deposit in Jiaodong[J]. Ore Deposit Geology, 2010, 29(S1):711-712.
[11] 代力. 四川夏塞银铅锌矿床I号矿体原生晕地球化学及深部预测[D]. 北京: 中国地质大学(北京), 2013.
[11] Dai L. Primary halo geochemistry and deep prediction of No.1 orebody in Xiasai Ag-Pb-Zn deposit,Sichuan Province[D]. Beijing: China University of Geosciences (Beijing), 2013.
[12] 韩扬. 云南芦子园Pb-Zn多金属矿床原生晕分带规律与深部成矿预测研究[D]. 北京: 中国地质大学(北京), 2016.
[12] Han Y. Primary halo zoning and deep metallogenic prediction of Luziyuan Pb-Zn polymetallic deposit in Yunnan Province[D]. Beijing: China University of Geosciences(Beijing), 2016.
[13] 潘谋成, 胡凯, 曹剑, 等. 黔西南簸箕田卡林型金矿中含砷黄铁矿和毒砂的赋金特征研究[J]. 高校地质学报, 2013, 19(2):293-306.
[13] Pan M C, Hu K, Cao J, et al. Study on the gold-bearing characteristics of arsenic-bearing pyrite and arsenopyrite in the Bojitian Carlin-type gold deposit in Southwestern Guizhou[J]. Geological Journal of Universities, 2013, 19(2):293-306.
[14] Di W, Luo G P. Application and effects of singularity analysis in evaluating the denudation degree of Carlin-type gold deposits in southwest Guizhou,China[J]. Ore Geology Reviews, 2018, 96:164-180.
doi: 10.1016/j.oregeorev.2018.04.018
[15] 林成贵, 程志中, 陈辉, 等. 四川省红泥坡铜矿原生晕特征及找矿方向[J/OL]. 北京:中国地质: 2021[2021-09-28]. http://kns.cnki.net/kcms/detail/11.1167.p.20200601.1747.018.html.
[15] Lin C G, Cheng Z Z, Chen H, et al. Characteristics and prospecting direction of primary halo of Hongnipo copper deposit in Sichuan Province[J]. Peking:Geology in China: 2021[2021-09-28]. http://kns.cnki.net/kcms/detail/11.1167.p.20200601.1747.018.html.
[16] 李浩嵩. 滇东南都龙锡铟多金属矿床原生晕分带特征及深部矿体预测研究[D]. 北京: 中国地质大学(北京), 2020.
[16] Li H S. Study on primary halo zoning and deep orebody prediction in Dulong Sn-Ln polymetallic deposit,southeast Yunnan[D]. Beijing: China University of Geosciences(Beijing), 2020.
[17] 张赞赞, 张舒, 吴明安, 等. 安徽庐枞盆地泥河玢岩型铁矿床地质—原生晕地球化学找矿模型[J]. 矿床地质, 2020, 39(2):305-325.
[17] Zhang Z Z, Zhang S, Wu M A, et al. Geological characteristics and prospecting potential of Nihe porphyrite type iron deposit in Luzong Basin,Anhui Province[J]. Mineral Deposits, 2020, 39(2):305-325.
[1] 陈伟, 谭友, 曹正端, 廖志权, 张宁发, 傅海晖. 构造原生晕在攻深找盲中的应用——以赣南银坑牛形坝铅锌金银矿床为例[J]. 物探与化探, 2023, 47(4): 892-905.
[2] 魏从玲, 陈建立, 郭鹏. 基于MRAS证据权重模型的河南老湾地区金矿成矿预测[J]. 物探与化探, 2022, 46(3): 653-660.
[3] 史琪, 赵延朋, 迟占东, 葛华, 康铁锁, 李发兴, 魏翔宇, 卢见昆, 杨人毅. 老挝川圹省约俄锡多金属矿区沟系土壤地球化学特征及成矿预测[J]. 物探与化探, 2021, 45(4): 824-834.
[4] 周明磊, 汝亮, 朱裕振, 于长春, 吴成平, 高志军, 张文艳, 邵玉宝. 山东齐河—禹城地区重磁场特征及找矿预测[J]. 物探与化探, 2021, 45(2): 301-307.
[5] 刘成功, 景建恩, 金胜, 魏文博. 广西大厂矿田深部成矿预测及成矿机制研究[J]. 物探与化探, 2021, 45(2): 337-345.
[6] 朱裕振, 强建科, 王林飞, 张文艳, 戴世坤. 深埋铁矿磁测数据三维反演分析与找矿靶区预测[J]. 物探与化探, 2019, 43(6): 1182-1190.
[7] 宋豪, 张义蜜, 王万银. 河南内黄—浚县一带重磁异常与深部磁铁矿靶区预测研究[J]. 物探与化探, 2019, 43(6): 1191-1204.
[8] 李凯, 廖咏, 黄凝, 陈红生, 袁晶, 刘小龙. 新疆巴里坤望洋台一带1∶5万水系沉积物测量异常特征及找矿靶区优选[J]. 物探与化探, 2019, 43(6): 1236-1245.
[9] 张恩, 段明, 卢辉雄, 冯博, 曹秋义, 杨彦超. 林西—乌兰浩特地区铀成矿多源信息分析与成矿预测[J]. 物探与化探, 2019, 43(5): 948-957.
[10] 杨玉勤, 李兵海, 张翔. 利用航磁增强处理方法提取喇嘛苏铜矿及其外围弱磁异常[J]. 物探与化探, 2018, 42(6): 1173-1179.
[11] 孔志召. 太行山中段寺沟岩体电性结构分析及深部成矿预测[J]. 物探与化探, 2018, 42(5): 882-888.
[12] 张波, 滕汉仁, 胥溢. 甘肃南部大水金矿矿集区磁异常特征及找矿分析[J]. 物探与化探, 2018, 42(5): 917-924.
[13] 黄宁, 陈国光, 张景, 鲁胜梅, 张宝松. 综合物探方法在多金属矿找矿靶区预测中的应用[J]. 物探与化探, 2016, 40(5): 929-934.
[14] 徐明才, 周建勇, 柴铭涛, 高景华, 刘建勋, 张保卫. 内蒙古准苏吉花斑岩型钼矿及外围反射地震探测[J]. 物探与化探, 2016, 40(4): 639-647.
[15] 田帆, 朱杰勇, 白光顺, 孙滨. 云南富宁水合口金矿土壤地球化学异常评价与找矿[J]. 物探与化探, 2016, 40(4): 661-666.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com