Please wait a minute...
E-mail Alert Rss
 
物探与化探  2023, Vol. 47 Issue (2): 504-511    DOI: 10.11720/wtyht.2023.1299
  生态地质调查 本期目录 | 过刊浏览 | 高级检索 |
频率域航空电磁法在雄安新区浅层(微)咸淡水调查中的应用
单希鹏(), 谢汝宽(), 余学中, 梁盛军, 李健
中国自然资源航空物探遥感中心,北京 100083
Application of the frequency-domain airborne electromagnetic method in shallow (brackish) saline water and freshwater surveys in the Xiong'an New Area
SHAN Xi-Peng(), XIE Ru-Kuan(), YU Xue-Zhong, LIANG Sheng-Jun, Li Jian
China Aero Geophysical Survey and Remote Sensing Center for Nature Resources, Beijing 100083, China
全文: PDF(6199 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

探明含(微)咸水地区的浅层咸淡水分界现状,对于当地浅层水资源的开发利用具有指导意义。笔者通过对雄安新区频率域航空电磁数据反演,得到地下浅层电性结构特征,进而推断新区浅层(微)咸淡水分界线。通过对比1998年、1999年两次水文地质调查咸淡水分界线,结合地面水文地质资料,笔者发现浅层地下水降落漏斗会影响咸水侵入的趋势:雄县东北处的昝岗—米家务—双堂一带(微)咸水侵入是由于昝岗水漏斗的存在而趋于稳定,但水漏斗也同时加剧了昝岗镇地区南部(微)咸水入侵;安新县城西侧由于容城水漏斗水位上升,相较1999年(微)咸水范围有所减少;高阳水漏斗地区水位持续下降,导致芦庄—高阳方向(微)咸水范围将继续扩大。通过预测的(微)咸水侵入趋势为新区建设中水资源的合理开发利用提供了数据依据。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
单希鹏
谢汝宽
余学中
梁盛军
李健
关键词 频率域航空电磁法雄安新区浅层水资源咸淡水分界    
Abstract

Determining the boundary between shallow saline water and freshwater in areas containing (brackish) saline water can guide the exploitation and utilization of local shallow water resources. This study analyzed the characteristics of underground shallow electrical structure through inversion based on the frequency-domain airborne electromagnetic data. Then, it inferred the boundary between the shallow (brackish) saline water and freshwater in the study area. By comparison with the boundaries between saline water and freshwater obtained from two hydrological surveys in 1998 and 1999 and by combining the surface hydrogeological data, this study revealed that the shallow groundwater cones of depression affect saline water intrusion trends in the Xiong’an New Area, and the details are as follows: The (brackish) saline water intrusion in the Zangang-Mijiawu-Shuangtang area in the northeast of Xiongxian County tends to be stable due to the presence of the Zangang groundwater cone of depression. However, this cone has also intensified the (brackish) saline water intrusion in southern Zangang Town. Compared to 1999, the (brackish) saline water range on the west side of Anxin County has continuously decreased due to the rise in the water level of the Rongcheng groundwater cone of depression. The continuous decrease in the water level of the Gaoyang groundwater cone of depression determines that the (brackish) saline water range in the Luzhuang-Gaoyang direction will continuously expand. These predicted (brackish) saline water intrusion trends will provide data support for the rational exploitation and utilization of water resources in the construction of the Xiong'an New Area.

Key wordsfrequency-domain airborne electromagnetic method    Xiong'an New Area    shallow water resources    boundary between saline water and freshwater
收稿日期: 2022-06-10      修回日期: 2022-09-02      出版日期: 2023-04-20
ZTFLH:  P631  
基金资助:中国地质调查局地质调查项目“全国国土空间生态风险综合调查与区划”(DD20221772);“雄安新区资源环境承载能力综合监测和透明雄安数字平台建筑”(DD20189143)
通讯作者: 谢汝宽(1984-),男,高级工程师,主要从事综合航空地球物理勘探工作。Email:xierk@foxmail.com
引用本文:   
单希鹏, 谢汝宽, 余学中, 梁盛军, 李健. 频率域航空电磁法在雄安新区浅层(微)咸淡水调查中的应用[J]. 物探与化探, 2023, 47(2): 504-511.
SHAN Xi-Peng, XIE Ru-Kuan, YU Xue-Zhong, LIANG Sheng-Jun, Li Jian. Application of the frequency-domain airborne electromagnetic method in shallow (brackish) saline water and freshwater surveys in the Xiong'an New Area. Geophysical and Geochemical Exploration, 2023, 47(2): 504-511.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2023.1299      或      https://www.wutanyuhuatan.com/CN/Y2023/V47/I2/504
Fig.1  华北平原地下浅层(微)咸水平面分布[21]
Fig.2  雄安新区浅层地下水等水位线[27]
Fig.3  测量系统及搭载飞机示意
Fig.4  雄安新区不同测线的电阻率剖面
Fig.5  雄安新区不同深度电阻率等值线平面
Fig.6  雄安新区-15 ~ -20 m电阻率平面等值线综合
[1] GB/T 50363—2006节水灌溉工程技术规范[S]. 北京: 中国计划出版社, 2006.
[1] GB/T 50363—2006 Technical specification for water-saving irrigation engineering[S]. Beijing: China Planning Press, 2006.
[2] 庞桂斌, 张立志, 丛鑫, 等. 微咸水灌溉下冬小麦光合作用与光响应曲线模拟[J]. 农业机械学报, 2021, 52(11):333-342.
[2] Pang G B, Zhang L Z, Cong X, et al. Leaf photosynthesis and light response curve simulation of winter wheat under brackish water irrigation[J]. Transaction of the Chinese Society for Agricultural Machine, 2021, 52(11):333-342.
[3] 杨官凯, 武育芳, 曹行行, 等. 微咸水灌溉对玉米秸秆有机复合基质番茄生长及品质特性的影响[J]. 华北农学报, 2021, 36(S):81-88.
[3] Yang G K, Wu Y F, Cao H H, et al. Effects of organic compound substrate from corn stalk tomato growth and fruit quality under brackish and fresh water irrigation[J] .Acta Agriculturae Boreali-Sinica, 2021, 36(S):81-88.
[4] 冯棣, 张俊鹏, 曹彩云, 等. 适宜棉花成苗的咸水灌溉方式及矿化度指标确定[J]. 农业工程学报, 2014, 30(22):95-101.
[4] Feng D, Zhang J P, Cao C Y, et al. Optimal irrigation method in pre-sowing irrigation with saline water and determination of mineralization degree index for cotton seedling[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(22):95-101.
[5] 王广恩, 郭丽, 钱玉源, 等. 不同咸水利用方式对棉花叶绿素荧光参数及土壤盐分的影响[J]. 棉花学报, 2021, 33(1):13-21.
[5] Wang G E, Guo L, Qian Y Y, et al. Effects of different s aline water irragation on chlorophyll fluores cence parameters in cotton and the soil s alt content[J]. Cotton Science, 2021, 33(1):13-21.
[6] 郭仁松, 林涛, 徐海江, 等. 微咸水滴灌对绿洲棉田水盐运移特征及棉花产量的影响[J]. 水土保持报, 2017, 31(1):211-216.
[6] Guo R S, Lin T, Xu H J, et al. Effect of saline water drip irrigation on water and salt transport features and cotton yield of oasis cotton field[J]. Journal of Soil and Water Conservation, 2017, 31(1):211-216.
[7] 马中昇, 谭军利, 魏童. 中国微咸水利用的地区和作物适用性研究进展[J]. 灌溉排水学报, 2019, 38(3):70-75.
[7] Ma Z B, Tan J L, Wei T. The Variation of salt-tolerance of crops in different regions irrigated with brackish water in China[J]. Journal of Irrigation and Drainage, 2019, 38(3):70-75.
[8] 王卫平, 周锡华, 范正国, 等. 吊舱式直升机电磁技术示范应用[J]. 中国地质调查, 2015, 2(5):1-7.
[8] Wang W P, Zhou X H, Fan Z G, et al. Demonstration application of towered bird helicopter-borne electromagnetic technique[J]. Geological Survey of China, 2015, 2(5):1-7.
[9] 王卫平, 余学中, 郭华, 等. 水工环航空地球物理探测技术及应用[M]. 北京: 地质出版社, 2021.
[9] Wang W P, Yu X Z, Guo H, et al. Hydrological engineering environmental airborne geophysical technique and its application[M]. Beijing: Geological Publishing House, 2021.
[10] 满延龙. 频率域航空电磁法浅层水资源调查的试验研究[J]. 地球物理学报, 1990, 33(5):604-610.
[10] Man Y L. Investigation of shadow water resources using frequency domain aeroelectromagentic method[J]. Chinese Journal of Geophysics, 1990, 33(5):604-610.
[11] 孟庆敏. Y11B航空物探(电/磁)综合站西北找水初步成果[J]. 物探与化探, 1998, 22(4):241-246.
[11] Meng Q M. Preliminary achievements obtained by Y11B aerogeophysical (electric / magnetic) integrated station in water exploration of northwest China[J]. Geophysical and Geochemical, 1998, 22(4):241-246.
[12] 王卫平, 王越盛. 航空电磁法在黄河口地区寻找浅层淡水的地质效果[J]. 物探与化探, 1999, 23(2):115-121,127.
[12] Wang W P, Wang Y S. The application of airborne electromagnetic method to the exploration of shadow fresh water at the mouth area of the Yellow River[J]. Geophysical and Geochemical, 1999, 23(2):115-121,127.
[13] Lipinski B A, Sams J I, Smith B D, et al. Using HEM surveys to evaluate disposal of by-product water form CBNG development in the Powder River Basin,Wyoming[J]. Geophysics, 2008, 73(3):B77-B84.
doi: 10.1190/1.2901200
[14] Siemon B, Christiansen A V, Auken E. A review of helicopter-borne electromagnetic methods for groundwater exploration[J]. Near Surface Geophysics, 2009,7,629-646.
[15] Chandra S, Tiwari V M, Vidyasagar M, et al. Airborne electromagnetic signatures of an ancient river in the water-stressed Ganga plain,Prayagraj,India:A potential groundwater repository[J]. Geophysical Research Letters, 2021, 48(23): e2021GL096100.
[16] Jorgensen F, Scheer W, Thomsen S, et al. Transboundary geophysical mapping of geological elements and salinity distribution critical for the assessment of future sea water intrusion in response to sea level rise[J]. Hydrology and Earth System Sciences, 2012, 16:1845-1862.
doi: 10.5194/hess-16-1845-2012
[17] Gunink J L, Bosch J H, Siemon B, et al. Combining ground-based and airborne EM through artificial neural networks for modelling glacial till under saline groundwater conditions[J]. Hydrology and Earth System Sciences, 2012, 16:3061-3074.
doi: 10.5194/hess-16-3061-2012
[18] Gottschalk I, Knight R, Asch T, et al. Using an airborne electromagnetic method to map saltwater intrusion in the northern Salinas Valley,California[J]. Geophysics, 2019, 85(4):B119-B131.
doi: 10.1190/geo2019-0272.1
[19] 钱永, 张兆吉, 费宇红, 等. 华北浅层地下水可持续利用潜力分析[J]. 中国生态农业学报, 2014, 22(8):890-897.
[19] Qian Y, Zhang Z J, Fei Y H, et al. Sustainable exploitable potential of shallow groundwater in the North China Plain[J]. Chinese Journal of Eco-Agriculture, 2014, 22(8):890-897.
[20] 刘元晴, 周乐, 何锦, 等. 华北平原浅层(微)咸水开发利用现状[J]. 灌溉排水学报, 2015, 34(S1):137-141.
[20] Liu Y Q, Zhou L, He J, et al. Research status and trend of shadow brackish exploration in North China Plain[J]. Journal of Irrigation and Drainage, 34(S1):137-141.
[21] 方生, 代文元. 华北平原咸水区雨洪控制利用[J]. 南水北调与水利科技. 2003, 1(1):38-43.
[21] Fang S, Dai W Y. Control and utilization of rainwater in salline groundwater region of North China Plain[J]. South to North Water Transfers and Water Science & Technology, 2003, 1(1):38-43.
[22] 河北省环境地质勘查院. 河北雄县区域水文地质调查报告[R]. 1998.
[22] Hebei Survey Institute of Environmental Gelogy. Regional hydrogeological survey report of Xiongxian County,Hebei Province[R]. 1998.
[23] 河北省环境地质勘查院. 河北安新县县区域水文地质调查报告[R]. 2000.
[23] Hebei Survey Institute of Environmental Gelogy. Regional hydrogeological survey report of Anxin County,Hebei Province[R]. 2000.
[24] 赵本龙, 马占辉, 赵建永. 雄安新区水文要素特性分析[J]. 水科学与工程技术, 2018(3):47-49.
[24] Zhao B L, Ma Z H, Zhao J Y. Analysis of the characteristics of hydrological factors in Xiong'an New Area[J]. Water Sciences and Engineering Technology, 2018(3):47-49.
[25] 马岩, 李洪强, 张杰, 等. 雄安新区城市地下空间探测技术研究[J]. 地球学报, 2020, 41(4):535-542.
[25] Ma Y, Li H Q, Zhang J, et al. Geophysical technology for underground space exploration in Xiong’an New Area[J]. Chinese Journal of Geophysics, 2020, 41(4):535-542.
[26] 凤蔚, 初晓凡, 李海涛, 等. 雄安新区地下水水位与降水及北太平洋指数的小波分析[J]. 水文地质工程地质, 2017, 44(6):1-8.
[26] Feng W, Chu X F, Li H T, et al. Wavelet analysis between groundwater level regimes and precipitation,north pacific index in the Xiong’an New Area[J]. Hydrogeology & Engineering Geology, 2017, 44(6):1-8.
[27] 马震, 夏雨波, 李海涛, 等. 雄安新区自然资源与环境—生态地质条件分析[J]. 中国地质, 2021, 48(3):677-696.
[27] Ma Z, Xia Y B, Li H T, et al. Analysis of natural resources and environment eco-geological conditions in the Xiong'an New Area[J]. Geology in China, 48(3):677-696.
[28] 袁瑞强, 龙西亭, 王鹏, 等. 白洋淀流域地下水更新速率[J]. 地理科学进展, 2015, 34(3):381-388.
doi: 10.11820/dlkxjz.2015.03.013
[28] Yuan R Q, Long X T, Wang P, et al. Renewal rate of groundwater in the Baiyangdian Lake Basin[J]. Progress in Geography, 2015, 34(3):381-388.
doi: 10.11820/dlkxjz.2015.03.013
[29] Auken E, Christiansen A V. Layered and laterally constrained 2D inversion of resistivity data[J]. Geophysics, 2004, 69(3):752-761.
doi: 10.1190/1.1759461
[30] 蔡晶, 齐彦福, 殷长春. 频率域航空电磁数据的加权横向约束反演[J]. 地球物理学报, 2014, 57(1):953-960.
[30] Cai J, Qi Y F, Yin C C. Weighted laterally-constrained inversion of frequency-domain airborne EM data[J]. Chinese Journal of Geophysics, 2014, 57(1):953-960.
[31] Christiansen A V, Auken E. A global measure for depth of investigation[J]. Geophysics, 2012, 77(4):WB171-WB177.
doi: 10.1190/geo2011-0393.1
[32] 赵建粮, 张笑笑, 李志丹, 等. 电法勘探在地下咸淡水划分中的应用[J]. 冶金管理, 2020, 15:108-110.
[32] Zhao J L, Zhang X X, Li Z D, et al. Application of electrical survey in the division of salt and fresh water in groundwater[J]. China Steel Focus, 2020, 15:108-110.
[1] 张昭, 殷全增, 张龙飞, 张大明, 张世晖, 黄国疏, 赵石峰, 杨彪, 台立勋, 张灯亮, 王进朝, 段刚. 综合物探技术在深部碳酸盐岩热储探测中的应用研究——以雄安新区为例[J]. 物探与化探, 2023, 47(4): 926-935.
[2] 苏永军, 曹占宁, 赵更新, 胡祥云, 范剑, 张竞, 范翠松, 黄忠峰. 高密度电阻率法在雄安新区浅表古河道精细化探测中的应用研究[J]. 物探与化探, 2023, 47(1): 272-278.
[3] 龙慧, 谢兴隆, 李凤哲, 任政委, 王春辉, 郭淑君. 二维地震和高密度电阻率测深揭示雄安新区浅部三维地质结构特征[J]. 物探与化探, 2022, 46(4): 808-815.
[4] 陈学群, 李成光, 田婵娟, 刘丹, 辛光明, 管清花. 高密度电阻率法在咸水入侵监测中的应用[J]. 物探与化探, 2021, 45(5): 1347-1353.
[5] 单希鹏, 谢汝宽, 梁盛军, 余学中. 直升机TEM测量影响因素分析[J]. 物探与化探, 2021, 45(1): 178-185.
[6] 区小毅, 黎海龙, 杨富强, 莫亚军, 陆怀成. 音频大地电磁法在广西北海市海水入侵调查中的应用[J]. 物探与化探, 2020, 44(1): 66-73.
[7] 于长春, 乔日新, 张迪硕. 雄安新区航磁推断的三维基底构造特征[J]. 物探与化探, 2017, 41(3): 385-391.
[8] 卢建忠, 吴其反, 方迎尧, 万建华. 航空物探在珠海—深圳地区浅层水资源环境评价中的应用[J]. 物探与化探, 2007, 31(6): 598-604.
[9] 周道卿. 频率域航空电磁数据的质心深度近似反演[J]. 物探与化探, 2007, 31(3): 242-244,249,.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com