E-mail Alert Rss
 

物探与化探, 2023, 47(2): 504-511 doi: 10.11720/wtyht.2023.1299

生态地质调查

频率域航空电磁法在雄安新区浅层(微)咸淡水调查中的应用

单希鹏,, 谢汝宽,, 余学中, 梁盛军, 李健

中国自然资源航空物探遥感中心,北京 100083

Application of the frequency-domain airborne electromagnetic method in shallow (brackish) saline water and freshwater surveys in the Xiong'an New Area

SHAN Xi-Peng,, XIE Ru-Kuan,, YU Xue-Zhong, LIANG Sheng-Jun, Li Jian

China Aero Geophysical Survey and Remote Sensing Center for Nature Resources, Beijing 100083, China

通讯作者: 谢汝宽(1984-),男,高级工程师,主要从事综合航空地球物理勘探工作。Email:xierk@foxmail.com

第一作者: 单希鹏(1989-),男,工程师,主要从事航空电磁数据采集、处理与解释工作。Email:shan_job@yeah.net

责任编辑: 王萌

收稿日期: 2022-06-10   修回日期: 2022-09-2  

基金资助: 中国地质调查局地质调查项目“全国国土空间生态风险综合调查与区划”(DD20221772)
“雄安新区资源环境承载能力综合监测和透明雄安数字平台建筑”(DD20189143)

Received: 2022-06-10   Revised: 2022-09-2  

摘要

探明含(微)咸水地区的浅层咸淡水分界现状,对于当地浅层水资源的开发利用具有指导意义。笔者通过对雄安新区频率域航空电磁数据反演,得到地下浅层电性结构特征,进而推断新区浅层(微)咸淡水分界线。通过对比1998年、1999年两次水文地质调查咸淡水分界线,结合地面水文地质资料,笔者发现浅层地下水降落漏斗会影响咸水侵入的趋势:雄县东北处的昝岗—米家务—双堂一带(微)咸水侵入是由于昝岗水漏斗的存在而趋于稳定,但水漏斗也同时加剧了昝岗镇地区南部(微)咸水入侵;安新县城西侧由于容城水漏斗水位上升,相较1999年(微)咸水范围有所减少;高阳水漏斗地区水位持续下降,导致芦庄—高阳方向(微)咸水范围将继续扩大。通过预测的(微)咸水侵入趋势为新区建设中水资源的合理开发利用提供了数据依据。

关键词: 频率域航空电磁法; 雄安新区; 浅层水资源; 咸淡水分界

Abstract

Determining the boundary between shallow saline water and freshwater in areas containing (brackish) saline water can guide the exploitation and utilization of local shallow water resources. This study analyzed the characteristics of underground shallow electrical structure through inversion based on the frequency-domain airborne electromagnetic data. Then, it inferred the boundary between the shallow (brackish) saline water and freshwater in the study area. By comparison with the boundaries between saline water and freshwater obtained from two hydrological surveys in 1998 and 1999 and by combining the surface hydrogeological data, this study revealed that the shallow groundwater cones of depression affect saline water intrusion trends in the Xiong’an New Area, and the details are as follows: The (brackish) saline water intrusion in the Zangang-Mijiawu-Shuangtang area in the northeast of Xiongxian County tends to be stable due to the presence of the Zangang groundwater cone of depression. However, this cone has also intensified the (brackish) saline water intrusion in southern Zangang Town. Compared to 1999, the (brackish) saline water range on the west side of Anxin County has continuously decreased due to the rise in the water level of the Rongcheng groundwater cone of depression. The continuous decrease in the water level of the Gaoyang groundwater cone of depression determines that the (brackish) saline water range in the Luzhuang-Gaoyang direction will continuously expand. These predicted (brackish) saline water intrusion trends will provide data support for the rational exploitation and utilization of water resources in the construction of the Xiong'an New Area.

Keywords: frequency-domain airborne electromagnetic method; Xiong'an New Area; shallow water resources; boundary between saline water and freshwater

PDF (6199KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

单希鹏, 谢汝宽, 余学中, 梁盛军, 李健. 频率域航空电磁法在雄安新区浅层(微)咸淡水调查中的应用[J]. 物探与化探, 2023, 47(2): 504-511 doi:10.11720/wtyht.2023.1299

SHAN Xi-Peng, XIE Ru-Kuan, YU Xue-Zhong, LIANG Sheng-Jun, Li Jian. Application of the frequency-domain airborne electromagnetic method in shallow (brackish) saline water and freshwater surveys in the Xiong'an New Area[J]. Geophysical and Geochemical Exploration, 2023, 47(2): 504-511 doi:10.11720/wtyht.2023.1299

0 引言

微咸水是指矿化度为2~5 g/L的水资源[1],在水资源匮乏的国家及地区被广泛使用。我国也在多个地区对微咸水进行开采利用,例如在宁夏吴忠、山东滨州利用微咸水灌溉可以提高番茄、冬小麦等农作物的产量[2-3];在新疆阿瓦提县、河北衡水及饶阳等地使用合理盐度微咸水灌溉棉田,并不会造成明显减产[4-6]。据统计,中国微咸水储量达277亿 m3 /a,其中可开采量为130亿 m3 /a,绝大部分位于地下10~100 m处,宜于开采[7]。因此,微咸水的调查研究不仅可以缓解我国部分地区水资源需求压力,而且可以指导微咸水地区水资源合理开采利用,进而支撑当地的农业灌溉及工业生产。

相较于传统的水文地质、地面物探调查,航空物探在水资源调查中具有覆盖面积大、效率高、不受地面障碍物限制等优势。频率域航空电磁法是根据地下物质的导电性、导磁性(有时也包括介电性或电化学性)的差异,通过航空仪器测量不同频率变化下的电磁场的空间分布和频率特性,进而推断地下不同物质的分布,从而解决各类地质问题的方法[8]。淡水电阻率一般大于25 Ω·m,在淡水区电阻率值主要取决于地层岩性的颗粒度,颗粒度由粗到细电阻率值逐渐降低;而咸水区,咸水呈相对低阻,矿化度越高电阻率越低,且当矿化度大于10 g/L时,电阻率值与岩性变化关系不大,主要由矿化度决定[9]。在国内外,航空电磁法已被广泛应用于水资源调查:20世纪80年代末,满延龙[10]就在河北南宫、曲周地区利用频率域航空电磁法进行水质填图,在咸水区划分淡水资源范围;孟庆敏[11]在西北敦煌地区使用三频航电划分了咸淡水界线,为当地淡水资源调查提供了物探资料;王卫平等[12]利用频率域航空电磁法在黄河口海侵地区寻找浅层淡水,取得了不错的效果;Lipinski等[13]使用直升机电磁法在怀俄明州波德河流域煤层气开采地区探测地下含水层,并计算矿化度,以评价开采过程对地下水的污染程度;Siemon等[14]在德国西北的波库姆岛使用频率域航空电磁法寻找浅层淡水资源,以缓解当地旅游业发展带来的淡水资源短缺问题;Chandra等[15]同样使用航空电磁法在印度普拉亚格拉寻找淡水资源;Jorgensen等、Gunnink等以及Gottschalk等[16-18]将航空电磁法应用于海岸带海水入侵调查,在划分海水入侵界线上均有不错效果。从前人的研究结果可以看出,航空电磁法在地下水资源调查中应用广泛,且咸水和淡水的电性差异明显,利用频率域航空电磁法进行咸淡水调查具备物性基础。

雄安新区地处华北平原,地下水利用量达到总用水量的近70%。其中,河北平原浅层淡水开采潜力一般,已存在超采情况,局部已无可持续利用的潜力,需适度控制;区内微咸水、咸水资源开采潜力分别为较大、大,在技术条件允许的情况下,可以扩大开采[19],以缓解地下水用水压力。华北平原地层在新构造运动以来,持续的沉降造成了3次以上不同程度的海水入侵[20],造成雄安新区东测浅层存在(微)咸水(图1)。1998年的雄县和1999年的安新县2次水文地质调查,均证实研究区内存在浅层(微)咸水;安新王岳村附近测得矿化度达5.5 g/L,已达到咸水级别[22-23]。20世纪雄安新区两次水文地质调查仅在局部地区划分了咸淡水分界,且缺乏分界线的变化趋势探讨。因此,探明雄安新区浅层(微)咸淡水分界现状对于指导当地水资源开发利用具有重要意义。

图1

图1   华北平原地下浅层(微)咸水平面分布[21]

Fig.1   Distribution map of subsurface shallow (micro) saline water in the North China Plain[21]


1 研究区概况

雄安新区位于河北省中部、太行山东麓,地处北京、天津和保定腹地,涵盖河北省雄县、容城县、安新县及周边部分区域[24]。新区整体地势相对平坦,容城—雄县一线以北为冲(湖)积微倾斜平原,上部为近代河流冲积层或扇前洼地堆积物,下伏冲洪积层;容城—雄县一线以南为冲(湖)积低平原,由近代河流冲积和湖沼沉积形成[25]

雄安新区及周边区域地下水类型主要为松散岩类孔隙水,含水层主要以第四系中、细砂为主[26]。雄安新区浅层地下水水位埋深一般为5~20 m,浅层地下水沿白洋淀淀区周边水位最高,从淀区往容城县、雄县米家务乡和新区西南部3个方向流动,水位逐渐降低(图2);浅层地下水可分为潜水和浅层承压水,含水层岩性主要以粉细砂、细砂为主[27]。多年来,雄安新区地下水资源处于消耗状态,区域地下水位下降是地下水资源消耗的直接表征,而地下水开采被认为是该区域地下水位下降的主要原因[26,28]

图2

图2   雄安新区浅层地下水等水位线[27]

Fig.2   Map of shallow groundwater level elevation in Xiong'an New Area[27]


2 数据获取及处理

本次研究使用中国地质调查局航空物探遥感中心于2018年在雄安新区开展的频率域航空电磁测量数据。使用设备为基于固定翼飞机(Y-12)的AGS-863型自研国产频率域航空电磁系统(图3)。AGS-863系统设计发射频率分别为520、2 020、8 020 Hz;3个频率磁矩分别为:323、102、122 Am2;电磁装置为垂直共面;收发距18.9 m。

图3

图3   测量系统及搭载飞机示意

Fig.3   Schematic diagram of measuring system and carrying aircraft


研究区设计测网覆盖雄安新区全境,共计9 500 km,测量比例尺1:5万,测线方向140°~320°。使用中国地质调查局航空物探遥感中心的GeoProbe Mager及加拿大Geosoft公司的Oasis Montaj两个软件完成采集数据的处理。主要的处理步骤包括:归一化校正和零点漂移校正。归一化校正是将电磁相应的电位值转换为×10-6,不同频率按照不同系数进行转换。测量系统在测量过程中随着环境温度等外界因素的影响,零值会产生漂移;而零点校正是利用测量前和测量后高空(500 m以上地面电磁信号为零)基线飞行测得的响应值之差来消除这类影响。处理完的原始数据使用丹麦奥胡斯大学的Aarhus Workbench进行反演,反演方法采用横向约束反演(laterally constrained inversion,简称LCI)[29]。LCI反演是一种拟二维反演方法,它是通过将剖面数据集成反演,并施加横向约束,同时反演出同一条测线上多测点的地电参数[30]。对反演得到每个点不同深度的电阻率数据进行可信深度评价(depth of investigation,简称DOI),低于DOI的数据会被删除[31]

3 结果

3.1 浅层(微)咸淡水分界

通过数据反演得到研究区浅层地下电性结构模型。由于研究区浅层地下水水位埋深5~20 m,因此笔者着重研究35 m以浅电性结构[27]图4为不同测线的电阻率剖面,剖面在西北、东南两侧在地表下具有明显的电阻率差异。剖面西北侧电阻率以高值为主,而东南侧电阻率明显要低于西北侧。且东南侧反演有效深度受低阻地质体影响明显小于西北侧。

图4

图4   雄安新区不同测线的电阻率剖面

Fig.4   Resistivity profile of different lines in Xiong'an New Area


为了更好探究研究区电阻率平面分布规律,笔者提取地表以下5~35 m 5个不同深度范围的电阻率形成等值线平面(图5)。从图中可以看出,在不同深度上测区均大致以NE—SW为界,电性特征存在明显差异:西北侧电性特征主要以高阻为主,而另外一侧则主要以低阻为主。在分界线以东大部分地区电阻率值在36 Ω·m以下,雄县东、安新县西南局部地区电阻率值在24 Ω·m以下;而分界线西侧地区几乎无低电阻率值区域,绝大部分地区电阻率值在45 Ω·m以上。

图5

图5   雄安新区不同深度电阻率等值线平面

Fig.5   Contour map of resistivity at different depths in Xiong'an New Area


统计资料显示,含矿化度2 g/L咸水的细粉砂电阻率值在15~24 Ω·m;而矿化度达到5 g/L时,电阻率一般在3~4.8 Ω·m[32]。因此,推断研究区东南侧电阻率值在24 Ω·m以下的低阻体主要由含(微)咸水的含水地层引起的,EN—WS方向上的电阻率特征分界线即为(微)咸淡水分界线。

3.2 分界线变化趋势分析

根据2019年雄安新区地下水统测数据分析,研究区内存在3个较为明显的浅层地下水降落漏斗,分别为:昝岗、容城及高阳[27]。3处浅层水漏斗对于(微)咸淡水分界线变化的影响有所区别(图6)。

图6

图6   雄安新区-15 ~ -20 m电阻率平面等值线综合

Fig.6   Comprehensive map of resistivity contour at -15 ~ -20 m depth in Xiong'an New Area


由于水漏斗的存在,导致昝岗镇附近浅层地下水向漏斗中心流动,一定程度上阻止了浅层(微)咸水继续向米家务乡西北方向侵入。因此,1998年雄县水文地质调查所测的咸淡水分界线(以2 g/L为界)在昝岗—米家务—双堂一线没有明显变化。但昝岗水漏斗同时也增加了张岗—龙湾—史各庄—刘家铺区域(微)咸水侵入的可能性。

2014年研究区禁(限)采地下水以来,浅层地下水水位下降减缓,加之受降水量增加、南水北调补水、引黄济淀和种植结构调整等因素影响,白洋淀水位以及容城县周边地区浅层地下水水位上升明显,容城县浅层水漏斗面积也呈明显减少趋势[27]。由此导致大王—安新—端村一侧,对比1999年安新县水文地质调查分界线(以2 g/L为界)明显向东侧推移。但在局部地区依旧有(微)咸水区域存在,例如大王—三台之间的民用水井在2019年水文地质调查中测到微咸水。因此,如果浅层水位保持稳定,安新县东侧分界线将趋于稳定。

在安州—关城一侧,相较于1999年所划界线有较为明显的(微)咸水侵入趋势。1999年安新县水文地质调查时,在寨里镇辖区内未发现咸水。但2019年水文地质调查在寨里镇附近测得一口矿化度大于2 g/L的民用水井,这也从侧面印证了安州—关城一带是有侵入迹象。

2019年,安新县西南部(芦庄—高阳一带)浅层地下水降落漏斗面积较上年增加了16.5%[27],也是新区内增加最多的区域。这加剧了(微)咸水向芦庄—高阳方向的侵入。未来该地区浅层地下水水位下降趋势如果得不到缓解,芦庄—高阳方向(微)咸水范围会继续扩大。

4 结论

笔者通过对雄安新区的频率域航空电磁数据反演,得到了研究区地下5~35 m的电性分布特征,以此推断研究区内(微)咸水与淡水的分界线。得到以下结论:①频率域航空电磁法结合地面验证可以有效应用于浅层(微)咸水与淡水的分界线识别及变化趋势评估。②浅层地下水降落漏斗会影响咸水侵入的趋势:雄县东北处的昝岗—米家务—双堂一带(微)咸水侵入由于昝岗水漏斗的存在而趋于稳定,但水漏斗也同时加剧了昝岗镇地区南部(微)咸水入侵;安新县城西侧由于容城水漏斗水位上升,相较1999年(微)咸水范围有所减少;高阳水漏斗地区水位持续下降,导致芦庄—高阳方向(微)咸水范围将继续扩大。

新区建成后,常住人口的增长会导致用水需求增加。因此,地下水资源的合理开发利用变得尤为重要。容城县大部及雄县西北部地区的浅层地下水位近几年持续回升,且水质较佳,可作为饮用水供水水源。在容城县东南、雄县东部以及安新县南部等(微)咸水区,浅层地下水不可用作饮用水,但可以作为农业灌溉、工业用水的水源。农业灌溉应避免漫灌,尽量采取滴灌或渠灌。对于昝岗、高阳两个浅层地下水降落漏斗区,应做好用水规划,减少两个地区浅层地下水开采量,以缓解浅层地下水位下降带来的(微)咸水侵入。(微)咸水区浅层地下水过度开采且得不到及时补充,还会引起当地土壤盐碱化、地面沉降等问题。此外,应对(微)咸淡水边界地区进行定期监测,为当地浅层地下水的开采利用规划提供依据。

致谢

感谢中国地质调查局环境监测院李海涛教授、赵凯博士在文章编写过程中给予的帮助,提供的水文监测井数据对于本文的研究具有重要的验证作用。同时,感谢评审专家、期刊编辑提出的宝贵修改意见。

参考文献

GB/T 50363—2006节水灌溉工程技术规范[S]. 北京: 中国计划出版社, 2006.

[本文引用: 1]

GB/T 50363—2006 Technical specification for water-saving irrigation engineering[S]. Beijing: China Planning Press, 2006.

[本文引用: 1]

庞桂斌, 张立志, 丛鑫, .

微咸水灌溉下冬小麦光合作用与光响应曲线模拟

[J]. 农业机械学报, 2021, 52(11):333-342.

[本文引用: 1]

Pang G B, Zhang L Z, Cong X, et al.

Leaf photosynthesis and light response curve simulation of winter wheat under brackish water irrigation

[J]. Transaction of the Chinese Society for Agricultural Machine, 2021, 52(11):333-342.

[本文引用: 1]

杨官凯, 武育芳, 曹行行, .

微咸水灌溉对玉米秸秆有机复合基质番茄生长及品质特性的影响

[J]. 华北农学报, 2021, 36(S):81-88.

[本文引用: 1]

Yang G K, Wu Y F, Cao H H, et al.

Effects of organic compound substrate from corn stalk tomato growth and fruit quality under brackish and fresh water irrigation

[J] .Acta Agriculturae Boreali-Sinica, 2021, 36(S):81-88.

[本文引用: 1]

冯棣, 张俊鹏, 曹彩云, .

适宜棉花成苗的咸水灌溉方式及矿化度指标确定

[J]. 农业工程学报, 2014, 30(22):95-101.

[本文引用: 1]

Feng D, Zhang J P, Cao C Y, et al.

Optimal irrigation method in pre-sowing irrigation with saline water and determination of mineralization degree index for cotton seedling

[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(22):95-101.

[本文引用: 1]

王广恩, 郭丽, 钱玉源, .

不同咸水利用方式对棉花叶绿素荧光参数及土壤盐分的影响

[J]. 棉花学报, 2021, 33(1):13-21.

[本文引用: 1]

Wang G E, Guo L, Qian Y Y, et al.

Effects of different s aline water irragation on chlorophyll fluores cence parameters in cotton and the soil s alt content

[J]. Cotton Science, 2021, 33(1):13-21.

[本文引用: 1]

郭仁松, 林涛, 徐海江, .

微咸水滴灌对绿洲棉田水盐运移特征及棉花产量的影响

[J]. 水土保持报, 2017, 31(1):211-216.

[本文引用: 1]

Guo R S, Lin T, Xu H J, et al.

Effect of saline water drip irrigation on water and salt transport features and cotton yield of oasis cotton field

[J]. Journal of Soil and Water Conservation, 2017, 31(1):211-216.

[本文引用: 1]

马中昇, 谭军利, 魏童.

中国微咸水利用的地区和作物适用性研究进展

[J]. 灌溉排水学报, 2019, 38(3):70-75.

[本文引用: 1]

Ma Z B, Tan J L, Wei T.

The Variation of salt-tolerance of crops in different regions irrigated with brackish water in China

[J]. Journal of Irrigation and Drainage, 2019, 38(3):70-75.

[本文引用: 1]

王卫平, 周锡华, 范正国, .

吊舱式直升机电磁技术示范应用

[J]. 中国地质调查, 2015, 2(5):1-7.

[本文引用: 1]

Wang W P, Zhou X H, Fan Z G, et al.

Demonstration application of towered bird helicopter-borne electromagnetic technique

[J]. Geological Survey of China, 2015, 2(5):1-7.

[本文引用: 1]

王卫平, 余学中, 郭华, . 水工环航空地球物理探测技术及应用[M]. 北京: 地质出版社, 2021.

[本文引用: 1]

Wang W P, Yu X Z, Guo H, et al. Hydrological engineering environmental airborne geophysical technique and its application[M]. Beijing: Geological Publishing House, 2021.

[本文引用: 1]

满延龙.

频率域航空电磁法浅层水资源调查的试验研究

[J]. 地球物理学报, 1990, 33(5):604-610.

[本文引用: 1]

Man Y L.

Investigation of shadow water resources using frequency domain aeroelectromagentic method

[J]. Chinese Journal of Geophysics, 1990, 33(5):604-610.

[本文引用: 1]

孟庆敏.

Y11B航空物探(电/磁)综合站西北找水初步成果

[J]. 物探与化探, 1998, 22(4):241-246.

[本文引用: 1]

Meng Q M.

Preliminary achievements obtained by Y11B aerogeophysical (electric / magnetic) integrated station in water exploration of northwest China

[J]. Geophysical and Geochemical, 1998, 22(4):241-246.

[本文引用: 1]

王卫平, 王越盛.

航空电磁法在黄河口地区寻找浅层淡水的地质效果

[J]. 物探与化探, 1999, 23(2):115-121,127.

[本文引用: 1]

Wang W P, Wang Y S.

The application of airborne electromagnetic method to the exploration of shadow fresh water at the mouth area of the Yellow River

[J]. Geophysical and Geochemical, 1999, 23(2):115-121,127.

[本文引用: 1]

Lipinski B A, Sams J I, Smith B D, et al.

Using HEM surveys to evaluate disposal of by-product water form CBNG development in the Powder River Basin,Wyoming

[J]. Geophysics, 2008, 73(3):B77-B84.

DOI:10.1190/1.2901200      URL     [本文引用: 1]

Production of methane from thick, extensive coal beds in the Powder River Basin of Wyoming has created water management issues. Since development began in 1997, more than 650 billion liters of water have been produced from approximately 22,000 wells. Infiltration impoundments are used widely to dispose of by-product water from coal bed natural gas (CBNG) production, but their hydrogeologic effects are poorly understood. Helicopter electromagnetic surveys (HEM) were completed in July 2003 and July 2004 to characterize the hydrogeology of an alluvial aquifer along the Powder River. The aquifer is receiving CBNG produced water discharge from infiltration impoundments. HEM data were subjected to Occam’s inversion algorithms to determine the aquifer bulk conductivity, which was then correlated towater salinity using site-specific sampling results. The HEM data provided high-resolution images of salinity levels in the aquifer, a result not attainable using traditional sampling methods. Interpretation of these images reveals clearly the produced water influence on aquifer water quality. Potential shortfalls to this method occur where there is no significant contrast in aquifer salinity and infiltrating produced water salinity and where there might be significant changes in aquifer lithology. Despite these limitations, airborne geophysical methods can provide a broadscale (watershed-scale) tool to evaluate CBNG water disposal, especially in areas where field-based investigations are logistically prohibitive. This research has implications for design and location strategies of future CBNG water surface disposal facilities within the Powder River Basin.

Siemon B, Christiansen A V, Auken E.

A review of helicopter-borne electromagnetic methods for groundwater exploration

[J]. Near Surface Geophysics, 2009,7,629-646.

[本文引用: 1]

Chandra S, Tiwari V M, Vidyasagar M, et al.

Airborne electromagnetic signatures of an ancient river in the water-stressed Ganga plain,Prayagraj,India:A potential groundwater repository

[J]. Geophysical Research Letters, 2021, 48(23): e2021GL096100.

[本文引用: 1]

Jorgensen F, Scheer W, Thomsen S, et al.

Transboundary geophysical mapping of geological elements and salinity distribution critical for the assessment of future sea water intrusion in response to sea level rise

[J]. Hydrology and Earth System Sciences, 2012, 16:1845-1862.

DOI:10.5194/hess-16-1845-2012      URL     [本文引用: 1]

. Geophysical techniques are increasingly being used as tools for characterising the subsurface, and they are generally required to develop subsurface models that properly delineate the distribution of aquifers and aquitards, salt/freshwater interfaces, and geological structures that affect groundwater flow. In a study area covering 730 km2 across the border between Germany and Denmark, a combination of an airborne electromagnetic survey (performed with the SkyTEM system), a high-resolution seismic survey and borehole logging has been used in an integrated mapping of important geological, physical and chemical features of the subsurface. The spacing between flight lines is 200–250 m which gives a total of about 3200 line km. About 38 km of seismic lines have been collected. Faults bordering a graben structure, buried tunnel valleys, glaciotectonic thrust complexes, marine clay units, and sand aquifers are all examples of geological structures mapped by the geophysical data that control groundwater flow and to some extent hydrochemistry. Additionally, the data provide an excellent picture of the salinity distribution in the area and thus provide important information on the salt/freshwater boundary and the chemical status of groundwater. Although the westernmost part of the study area along the North Sea coast is saturated with saline water and the TEM data therefore are strongly influenced by the increased electrical conductivity there, buried valleys and other geological elements are still revealed. The mapped salinity distribution indicates preferential flow paths through and along specific geological structures within the area. The effects of a future sea level rise on the groundwater system and groundwater chemistry are discussed with special emphasis on the importance of knowing the existence, distribution and geometry of the mapped geological elements, and their control on the groundwater salinity distribution is assessed.

Gunink J L, Bosch J H, Siemon B, et al.

Combining ground-based and airborne EM through artificial neural networks for modelling glacial till under saline groundwater conditions

[J]. Hydrology and Earth System Sciences, 2012, 16:3061-3074.

DOI:10.5194/hess-16-3061-2012      URL     [本文引用: 1]

. Airborne electromagnetic (AEM) methods supply data over large areas in a cost-effective way. We used Artificial Neural Networks (ANN) to classify the geophysical signal into a meaningful geological parameter. By using examples of known relations between ground-based geophysical data (in this case electrical conductivity, EC, from electrical cone penetration tests) and geological parameters (presence of glacial till), we extracted learning rules that could be applied to map the presence of a glacial till using the EC profiles from the airborne EM data. The saline groundwater in the area was obscuring the EC signal from the till but by using ANN we were able to extract subtle and often non-linear, relations in EC that were representative of the presence of the till. The ANN results were interpreted as the probability of having till and showed a good agreement with drilling data. The glacial till is acting as a layer that inhibits groundwater flow, due to its high clay-content, and is therefore an important layer in hydrogeological modelling and for predicting the effects of climate change on groundwater quantity and quality.\n

Gottschalk I, Knight R, Asch T, et al.

Using an airborne electromagnetic method to map saltwater intrusion in the northern Salinas Valley,California

[J]. Geophysics, 2019, 85(4):B119-B131.

DOI:10.1190/geo2019-0272.1      URL     [本文引用: 1]

Saltwater intrusion can pose a serious threat to groundwater quality in coastal regions. Estimating the extent of saltwater intrusion is vital for groundwater managers to plan appropriate mitigation strategies. The airborne electromagnetic (AEM) method is commonly used to evaluate groundwater resources, but it is challenging to apply in coastal environments because the low resistivity of saltwater-saturated aquifers attenuates the electromagnetic signal quickly and the relationship between electrical resistivity and pore water salinity is complex. However, if successful, the AEM method can supply information to address questions of critical importance in coastal regions. We investigated the extent of, and controls on, saltwater intrusion using the AEM method in the northern Salinas Valley, CA, USA. We collected 635 line-km of AEM data in the study area, the inversion results of which produced estimates of the electrical resistivity of the subsurface, reaching depths of between 50 and approximately 200 m below the ground surface. We have developed a relationship between the AEM electrical resistivity model and groundwater salinity, calibrated from borehole geophysical and water quality measurements, which allowed us to generate images revealing the distribution of saltwater and fresher groundwater in the study area. This fresher groundwater (defined as “a source of drinking water”) was successfully mapped out in the unconfined aquifer (the Dune Sand Aquifer) and the uppermost confined aquifer (the 180-Foot Aquifer) in the study area, illustrating a groundwater recharge process that helps mitigate saltwater intrusion in the 180-Foot Aquifer. Deep, low-resistivity bodies also were mapped, indicating regions where saltwater likely is migrating vertically from the 180-Foot Aquifer into the lower confined aquifer (the 400-Foot Aquifer). The findings from this case study demonstrate the value of acquiring AEM data for investigating the distribution of salinity in coastal aquifers impacted by saltwater intrusion.

钱永, 张兆吉, 费宇红, .

华北浅层地下水可持续利用潜力分析

[J]. 中国生态农业学报, 2014, 22(8):890-897.

[本文引用: 1]

Qian Y, Zhang Z J, Fei Y H, et al.

Sustainable exploitable potential of shallow groundwater in the North China Plain

[J]. Chinese Journal of Eco-Agriculture, 2014, 22(8):890-897.

[本文引用: 1]

刘元晴, 周乐, 何锦, .

华北平原浅层(微)咸水开发利用现状

[J]. 灌溉排水学报, 2015, 34(S1):137-141.

[本文引用: 1]

Liu Y Q, Zhou L, He J, et al.

Research status and trend of shadow brackish exploration in North China Plain

[J]. Journal of Irrigation and Drainage, 34(S1):137-141.

[本文引用: 1]

方生, 代文元.

华北平原咸水区雨洪控制利用

[J]. 南水北调与水利科技. 2003, 1(1):38-43.

[本文引用: 2]

Fang S, Dai W Y.

Control and utilization of rainwater in salline groundwater region of North China Plain

[J]. South to North Water Transfers and Water Science & Technology, 2003, 1(1):38-43.

[本文引用: 2]

河北省环境地质勘查院.

河北雄县区域水文地质调查报告

[R]. 1998.

[本文引用: 1]

Hebei Survey Institute of Environmental Gelogy.

Regional hydrogeological survey report of Xiongxian County,Hebei Province

[R]. 1998.

[本文引用: 1]

河北省环境地质勘查院.

河北安新县县区域水文地质调查报告

[R]. 2000.

[本文引用: 1]

Hebei Survey Institute of Environmental Gelogy.

Regional hydrogeological survey report of Anxin County,Hebei Province

[R]. 2000.

[本文引用: 1]

赵本龙, 马占辉, 赵建永.

雄安新区水文要素特性分析

[J]. 水科学与工程技术, 2018(3):47-49.

[本文引用: 1]

Zhao B L, Ma Z H, Zhao J Y.

Analysis of the characteristics of hydrological factors in Xiong'an New Area

[J]. Water Sciences and Engineering Technology, 2018(3):47-49.

[本文引用: 1]

马岩, 李洪强, 张杰, .

雄安新区城市地下空间探测技术研究

[J]. 地球学报, 2020, 41(4):535-542.

[本文引用: 1]

Ma Y, Li H Q, Zhang J, et al.

Geophysical technology for underground space exploration in Xiong’an New Area

[J]. Chinese Journal of Geophysics, 2020, 41(4):535-542.

[本文引用: 1]

凤蔚, 初晓凡, 李海涛, .

雄安新区地下水水位与降水及北太平洋指数的小波分析

[J]. 水文地质工程地质, 2017, 44(6):1-8.

[本文引用: 2]

Feng W, Chu X F, Li H T, et al.

Wavelet analysis between groundwater level regimes and precipitation,north pacific index in the Xiong’an New Area

[J]. Hydrogeology & Engineering Geology, 2017, 44(6):1-8.

[本文引用: 2]

马震, 夏雨波, 李海涛, .

雄安新区自然资源与环境—生态地质条件分析

[J]. 中国地质, 2021, 48(3):677-696.

[本文引用: 7]

Ma Z, Xia Y B, Li H T, et al.

Analysis of natural resources and environment eco-geological conditions in the Xiong'an New Area

[J]. Geology in China, 48(3):677-696.

[本文引用: 7]

袁瑞强, 龙西亭, 王鹏, .

白洋淀流域地下水更新速率

[J]. 地理科学进展, 2015, 34(3):381-388.

DOI:10.11820/dlkxjz.2015.03.013      [本文引用: 1]

受到水库拦蓄、抽水灌溉等人类活动的影响,白洋淀流域平原区河流断流,非承压含水层逐渐被疏干。下游的白洋淀无法得到河流和地下水的补给,时刻面临干涸。鉴于白洋淀对区域生态环境和气候有重要的影响,多次实施调水补淀工程。然而,白洋淀渗漏严重,调水补淀的效果不理想。为了保护白洋淀,亟需恢复地下水的可持续性,这首先需要查明地下水的更新能力。2009年,对白洋淀流域平原区地下水进行实地调查,并采集采集地表水和地下水水样共36个,分析其氚含量。利用线性插值法、吴秉钧法和连炎清法恢复了该地区降水氚含量的历史数据,结合数学物理模型估算了非承压地下水的更新能力。结果表明,氚含量较高的白洋淀水渗漏使得周边地下水氚含量增高。总体上,沿山区到淀区的方向非承压地下水更新速率逐渐由15.0%/a降低至4.0%/a。山前平原冲洪积扇区域是非承压地下水的主要补给区,平均更新速率达9.8%/a。冲积平原区域非承压地下水的平均更新速率仅为4.4%/a。为此,需要限制在冲积平原区域开采非承压地下水,以逐步恢复其更新速率,使其重新补给白洋淀。地下水的恢复过程可能较慢,但可从根本上解决调水补淀无法解决的干淀问题。

Yuan R Q, Long X T, Wang P, et al.

Renewal rate of groundwater in the Baiyangdian Lake Basin

[J]. Progress in Geography, 2015, 34(3):381-388.

DOI:10.11820/dlkxjz.2015.03.013      [本文引用: 1]

Human activities, such as water storage in reservoirs and pumping for irrigation, reduce stream flows and deplete unconfined aquifer in the plain area of the Baiyangdian Lake Basin. Without recharges from rivers and groundwater, the Baiyangdian Lake faces the risk of drying up. Considering the impacts of the Baiyangdian Lake on the local environment, biodiversity, and climate, many projects of water transfer for the sustainability of the lake were implemented. However, the result are unsatisfactory due to considerable leakages in the lake. In order to preserve the lake, sustainable groundwater use should be achieved and therefore, it is necessary to study the renewal rate of unconfined groundwater. In this study groundwater was surveyed on the plain area of the Baiyangdian Lake Basin in 2009. thirty six samples from groundwater and surface water were collected for measuring the content of tritium. Tritium content in precipitation since the mid-1950s was rebuilt by comparing the results from linear interpolation, Wu's method and Lian's method. Renewal rate of groundwater in the plain area was estimated based on the tritium data and the well-mixed model. Results show that leakage of the lake slightly increased tritium content in the ambient groundwater. Generally, the renewal rate of unconfined groundwater decreased from 15.0 %/a to 4.0 %/a between the mountain area and the lake. Alluvial fans are the main recharge area with an average renewal rate of 9.8 %/a. The renewal rate dropped to 4.4 %/a in the alluvial plain. We recommend that groundwater development should be restricted in the alluvial plain to recover the renewal rate of unconfined groundwater. Although such recovery may take a long time to occur, it is believed that recharging the lake by shallow groundwater is the only way to maintain a sustainable lake.

Auken E, Christiansen A V.

Layered and laterally constrained 2D inversion of resistivity data

[J]. Geophysics, 2004, 69(3):752-761.

DOI:10.1190/1.1759461      URL     [本文引用: 1]

In a sedimentary environment, quasi‐layered models often can represent the actual geology more accurately than smooth minimum‐structure models. We present a 2D inversion scheme with lateral constraints and sharp boundaries (LCI) for continuous resistivity data. All data and models are inverted as one system, producing layered solutions with laterally smooth transitions. The models are regularized through lateral constraints that tie interface depths or thicknesses and resistivities of adjacent layers. A priori information, used to resolve ambiguities and to add, for example, geological information, can be added at any point of the profile and migrates through the lateral constraints to parameters at adjacent sites. Similarly, information from areas with well‐resolved parameters migrates through the constraints to help resolve areas with poorly constrained parameters. The estimated model is complemented by a full sensitivity analysis of the model parameters supporting quantitative evaluation of the inversion result.

蔡晶, 齐彦福, 殷长春.

频率域航空电磁数据的加权横向约束反演

[J]. 地球物理学报, 2014, 57(1):953-960.

[本文引用: 1]

Cai J, Qi Y F, Yin C C.

Weighted laterally-constrained inversion of frequency-domain airborne EM data

[J]. Chinese Journal of Geophysics, 2014, 57(1):953-960.

[本文引用: 1]

Christiansen A V, Auken E.

A global measure for depth of investigation

[J]. Geophysics, 2012, 77(4):WB171-WB177.

DOI:10.1190/geo2011-0393.1      URL     [本文引用: 1]

We tested a new robust concept for the calculation of depth of investigation (DOI) that is valid for any 1D electromagnetic (EM) geophysical model. A good estimate of DOI is crucial when building geologic and hydrological models from EM data sets because the validity of the models varies strongly with data noise and the resistivity of the layers themselves. For diffusive methods, such as ground-based and airborne electromagnetic, it is not possible to define an unambiguous depth below which there is no information on the resistivity structure and a measure of DOI is therefore to what depth the model can be considered reliable. The method we presented is based on the actual model output from the inversion process and we used the actual system response, contrary to assuming, e.g., planar waves over a homogeneous half-space, the widely used skin depth calculation. Equally important, the data noise and the number of data points are integrated into the calculation. Our methodology is based on a recalculated sensitivity (Jacobian) matrix of the final model and thus it can be used on any model type for which a sensitivity matrix can be calculated. Unlike other sensitivity matrix methods, we defined a global and absolute threshold value contrary to defining a relative (such as 5%), sensitivity limit. The threshold value will apply to all 1D inverted data and will thus produce comparable numbers of DOI.

赵建粮, 张笑笑, 李志丹, .

电法勘探在地下咸淡水划分中的应用

[J]. 冶金管理, 2020, 15:108-110.

[本文引用: 1]

Zhao J L, Zhang X X, Li Z D, et al.

Application of electrical survey in the division of salt and fresh water in groundwater

[J]. China Steel Focus, 2020, 15:108-110.

[本文引用: 1]

/

京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com