Please wait a minute...
E-mail Alert Rss
 
物探与化探  2022, Vol. 46 Issue (6): 1485-1491    DOI: 10.11720/wtyht.2022.1586
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
基于深度加权的三维地震斜率层析成像
田坤1(), 王常波1, 刘立彬1, 张建中2
1.中国石化胜利油田分公司 物探研究院, 山东 东营 257022
2.中国海洋大学 海洋地球科学学院,山东 青岛 266000
3D seismic slope tomography based on depth weighting
TIAN Kun1(), WANG Chang-Bo1, LIU Li-Bin1, ZHANG Jian-Zhong2
1. Geophysical Research Institute,Shengli Oilfield Branch Company of Sinopec,Dongying 257022,China
2. College of Marine Geosciences,Ocean University of China,Qingdao 266000,China
全文: PDF(3463 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

地震斜率层析成像是一种联合使用反射波局部相干同相轴的走时和斜率来建立宏观速度模型的有效方法。对于低信噪比资料,往往能够拾取的深层有效反射波数据远远少于浅层反射波数据,使深部地层速度的层析反演效果差。因此,提出了一种基于深度加权的三维地震斜率层析成像方法。在每次迭代的线性层析反演方程中,对观测数据关于离散模型节点速度的核函数进行深度加权,权系数根据离散模型节点深度和当前迭代的各个炮—检对的反射点深度来确定,实现了加大深部反射波数据对深层速度的约束作用、浅层速度主要由浅部反射波数据约束的目的,在保持浅层速度反演精度的同时,改善对深层速度的反演效果。对理论模型数据和实际资料应用测试的良好效果,表明了该方法的有效性。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
田坤
王常波
刘立彬
张建中
关键词 速度建模地震反射波斜率层析成像深度加权    
Abstract

The seismic slope tomography is an effective method for building macro-velocity models using the travel time and slopes of locally coherent events of reflected waves.For data with low signal-to-noise ratios,the deep effective reflection wave data that can be picked are often far fewer than the shallow reflection wave data,resulting in a poor tomographic inversion effect of the velocity of the deep strata.Therefore,this study proposed a 3D seismic slope tomography method based on depth weighting.In the linear tomographic inversion equation of each iteration,the depth weighting was performed for the kernel function of the observed data on the node velocity of the discrete model.The weighting coefficient was determined according to the node depth of the discrete model and the reflection point depth of each shot-detection pair of the current iteration,increasing the constraining effect of deep reflection wave data on the deep velocity.Meanwhile,the shallow velocity was mainly constrained by the shallow reflection wave data.As a result,the inversion effect of deep velocity could be improved while maintaining the inversion precision of shallow velocity.The application and tests of both theoretical model data and actual data yielded satisfactory results,verifying the effectiveness of the method.

Key wordsvelocity model    seismic reflection wave    slope tomography    depth weighting
收稿日期: 2021-11-01      修回日期: 2022-08-11      出版日期: 2022-12-20
ZTFLH:  P631.4  
基金资助:中国石化股份公司科技攻关项目(P19015-3);胜利油田科技攻关项目(YKW2002);胜利油田科技攻关项目(YKB2009)
作者简介: 田坤(1986-),男,高级工程师,主要从事地震资料处理方法技术的研究与应用工作。Email:tiankunwudi@163.com
引用本文:   
田坤, 王常波, 刘立彬, 张建中. 基于深度加权的三维地震斜率层析成像[J]. 物探与化探, 2022, 46(6): 1485-1491.
TIAN Kun, WANG Chang-Bo, LIU Li-Bin, ZHANG Jian-Zhong. 3D seismic slope tomography based on depth weighting. Geophysical and Geochemical Exploration, 2022, 46(6): 1485-1491.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2022.1586      或      https://www.wutanyuhuatan.com/CN/Y2022/V46/I6/1485
Fig. 1  模型参数与观测数据几何关系
Fig. 2  古潜山理论速度模型
Fig. 3  y=1km的速度模型切片
a—理论模型;b—初始模型;c—无深度加权的反演模型;d—有深度加权的反演模型
Fig. 4  理论速度与反演速度随深度变化曲线的对比
a—x=6 km处速度曲线;b—x=12 km处速度曲线
Fig. 5  预处理后单炮地震记录
Fig. 6  斜率层析成像反演的速度模型
a—无深度加权;b—有深度加权
Fig. 7  斜率层析成像反演速度模型沿y=9 km测线(图6AB线段位置)切片
a—无深度加权;b—有深度加权
Fig. 8  使用不同速度模型的叠前深度偏移剖面
a—无深度加权斜率层析反演模型;b—有深度加权斜率层析反演模型
[1] Billette F, Lambaré G. Velocity macro-model estimation from seismic reflection data by stereotomography[J]. Geophysical Journal International, 1998, 135(2):671-690.
doi: 10.1046/j.1365-246X.1998.00632.x
[2] Billette F, Le B S, Podvin P, et al. Practical aspects and applications of 2D stereotomography[J]. Geophysics, 2003, 68:1008-1021.
doi: 10.1190/1.1581072
[3] Begat S L. Application of 2D stereotomography to marine seismic reflection data[C]// SEG Technical Program Expanded Abstracts, 2000, 19(1):2484.
[4] Chalard E, Podvin P, Lambaré G, et al. 3D stereotomography: A preliminary synthetic test[C]// SEG Technical Program Expanded Abstracts, 2000, 19(1):2484.
[5] Chalard E. 3D stereotomographic inversion on real data set[C]// SEG Technical Program Expanded Abstracts, 2002, 21(1):2478.
[6] Alerini M, Traub B, Ravaut C, et al. Prestack depth imaging of ocean-bottom node data[J]. Geophysics, 2009, 74(6):WCA57-WCA63.
doi: 10.1190/1.3204767
[7] Nag S, Alerini M, Duveneck E, et al. 2D stereotomography for anisotropic media[C]// SEG Technical Program Expanded Abstracts, 2006, 25(1):3541.
[8] 谷巍巍, 杨锴, 王潇. 二维VTI介质qP波斜率层析方法[J]. 石油物探, 2019, 58(6):828-836.
[8] Gu W W, Yang K, Wang X. qP-wave slope tomography in VTI media[J]. Geophysical Prospecting for Petroleum, 2019, 58(6):828-836.
[9] Tavakoli F B, Operto S, Ribodetti A, et al. Slope tomography based on eikonal solvers and the adjoint-state method[J]. Geophysical Journal International, 2017(3):1629-1647.
[10] Jin C K, Zhang J Z, et al. Stereotomography of seismic data acquired on undulant topography[J]. Geophysics Journal of the Society of Exploration Geophysicists, 2018, 83(4):U35-U41.
[11] 邵炜栋, 杨锴, 邢逢源, 等. 慢度平方三角网格立体层析反演方法[J]. 地球物理学报, 2017, 60(9):3574-3586.
[11] Shao W D, Yang K, Xing F Y, et al. Stereo-tomography in squared-slowness triangulated model[J]. Chinese Journal of Geophysics, 2017, 60(9):3574-3586.
[12] Costa J C, Silva F, Gomes E N, et al. Regularization in slope tomography[J]. Geophysics, 2008, 73(5):39-47.
[13] 张力起, 杨锴, 邢逢源, 等. 地层格架正则化约束下的二维立体层析反演[J]. 地球物理学报, 2019, 62(2):634-647.
[13] Zhang L Q, Yang K, Xing F Y, et al. 2D stereo-tomography inversion constrained by regularization of stratum framework[J]. Chinese Journal of Geophysics, 2019, 62(2):634-647.
[14] Lambare G. Stereotomographic picking in practice[C]// SEG Technical Program Expanded Abstracts, 2004, 23(1):2586.
[15] Guillaume P, Lambaré G, Herrmann P, et al. From time to depth imaging-a fast and accurate workflow[C]// 69th EAGE Conference and Exhibition incorporating SPE EUROPEC, 2007.
[16] Neckludov D, Baina R, Landa E. Residual stereotomographic inversion[J]. Geophysics, 2005, 71(4):E35-E39.
doi: 10.1190/1.2216191
[17] Chauris H, Noble M S, Lambaré G, et al. Migration velocity analysis from locally coherent events in 2-D laterally heterogeneous media,Part I:Theoretical aspects[J]. Geophysics, 2015, 67(4):1202-1212.
doi: 10.1190/1.1500382
[18] 杨锴, 熊凯, 王宇翔, 等. 联合结构张量与运动学反偏移的立体层析数据空间提取与反演策略研究I: 理论[J]. 石油物探, 2017, 56(5):694-706.
[18] Yang K, Xiong K, Wang Y X, et al. Inversion strategy and data space construction for stereo-tomography using structure tensor and kinematic demigration.I:theory[J]. Geophysical Prospecting for Petroleum, 2017, 56(5):694-706.
[19] 熊凯, 杨锴, 邢逢源, 等. 联合结构张量与运动学反偏移的立体层析数据空间提取与反演策略研究Ⅱ:实践[J]. 石油物探, 2018, 57(2):254-261.
[19] Xiong K, Yang K, Xing F Y, et al. Inversion strategy and data space extraction for stereo-tomography based on a combination of structure tensor and kinematic demigration.Ⅱ:practice[J]. Geophysical Prospecting for Petroleum, 2018, 57(2):254-261.
[20] 黄忠来, 张建中, 蒋亚洲. 基于直线和双曲线叠加的斜率自动拾取方法[J]. 地球物理学进展, 2013, 28(6):3007-3014.
[20] Huang Z L, Zhang J Z, Jiang Y Z. Automatic method for picking slopes of locally coherent events based on linear and hyperbolic stack[J]. Progress in Geophysics, 2013, 28(6):3007-3014.
[21] 金昌昆, 蒋亚洲, 张建中. 基于曲波变换的地震反射波同相轴斜率拾取方法[J]. 石油物探, 2015, 54(4):414-419.
[21] Jin C K, Jiang Y Z, Zhang J Z. An automatic picking method for slopes of locally coherent reflection events based on Curvelet transform[J]. Geophysical Prospecting for Petroleum, 2015, 54(4):414-419.
[22] 王宇翔, 杨锴, 杨小椿, 等. 基于梯度平方结构张量算法的高密度二维立体层析反演[J]. 地球物理学报, 2016, 59(1):263-276.
[22] Wang Y X, Yang K, Yang X C, et al. A high-density stereo-tomography method based on the gradient square structure tensors algorithm[J]. Chinese Journal of Geophysics, 2016, 59(1):263-276.
[23] 李凌云, 梁鸿贤, 秦宁, 等. 浅海海底表层速度建模技术及其应用研究[J]. 物探与化探, 2019, 43(2):373-379.
[23] Li L Y, Liang H X, Qing N. et al. A technique for building syb-seabed velocity model in shallow sea areas and its application to seismic statics[J]. Geophysical and Geochemical Exploration, 2019, 43(2):373-379.
[24] 李金丽, 李振春, 管路平, 等. 地震波衰减及补偿方法[J]. 物探与化探, 2015, 39( 3) : 456-465.
[24] Li J L, Li Z C, Guan L P, et al. The method of seismic attenuation and energy compensation[J]. Geophysical and Geochemical Exploration, 2015, 39(3):456-465.
[25] Lambare G. Stereotomography[J]. Geophysics, 2008, 73(5):VE25-VE34.
doi: 10.1190/1.2952039
[26] 梁生贤, 王桥, 焦彦杰, 等. LSQR法在位场反演中的分析与评价[J]. 物探与化探, 2019, 43(2):359-366.
[26] Liang S X, Wang Q, Jiao Y J, et al. Analysis and evaluation of the potential field inversion using LSQR method[J]. Geophysical and Geochemical Exploration, 2019, 43(2):359-366.
[1] 齐鹏. 深层膏盐体局部层析速度建模[J]. 物探与化探, 2022, 46(4): 982-987.
[2] 徐蔚亚. 关于浮动基准面与起伏地表面的讨论[J]. 物探与化探, 2021, 45(1): 95-101.
[3] 郑浩, 蔡杰雄, 王静波. 基于构造导向滤波的高斯束层析速度建模方法及其应用[J]. 物探与化探, 2020, 44(2): 372-380.
[4] 彭海龙, 赫建伟, 任婷, 邓盾, 江凡, 王瑞敏, 张文祥. 基于地质构造约束的3D速度建模方法在琼东南盆地深水复杂断块区域成像中的应用[J]. 物探与化探, 2018, 42(3): 537-544.
[5] 薛花, 杜民, 文鹏飞, 张宝金, 张如伟. 网格层析速度反演方法在准三维西沙水合物中的应用[J]. 物探与化探, 2017, 41(5): 846-851.
[6] 张珺. 加蓬盐下复杂构造区井控高精度变速成图的方法研究[J]. 物探与化探, 2017, 41(3): 535-541.
[7] 白雪, 李振春, 张凯, 宋翔宇, 杨国权, 尚江伟. 基于井数据约束的高精度层析速度反演[J]. 物探与化探, 2015, 39(4): 805-811.
[8] 李燕. 盐丘构造成像速度建模及逆时偏移关键参数优选[J]. 物探与化探, 2015, 39(3): 537-544.
[9] 刘宏岳. 直流高密度电法在浅海工程勘察中的应用[J]. 物探与化探, 2013, 37(4): 756-760.
[10] 张华为, 孙圣, 朱自强. 隧道地质预报的资料分析与应用[J]. 物探与化探, 2013, 37(3): 561-564.
[11] 扈本娜, 刘国辉, 苗景春. 综合物探方法探测城市地下巷道的可行性[J]. 物探与化探, 2012, 36(S1): 150-153.
[12] 张凯, 汪青松. 浅层地震反射波法在塌陷勘察中的超前预报[J]. 物探与化探, 2010, 34(1): 85-88.
[13] 段云卿, 覃天, 杨文军, 高海燕. 叠前偏移方法在辽河油田大民屯地区的应用[J]. 物探与化探, 2008, 32(4): 438-441.
[14] 王光权. 物探方法在圆梁山隧道超前地质预报中的应用[J]. 物探与化探, 2005, 29(4): 369-373.
[15] 葛祖焕, 胡纯清, 向慧敏, 丰勇, 章松. 桩端灰岩溶洞探测[J]. 物探与化探, 2004, 28(1): 85-87.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com