Please wait a minute...
E-mail Alert Rss
 
物探与化探  2022, Vol. 46 Issue (1): 198-205    DOI: 10.11720/wtyht.2022.1259
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
基于伪随机信号的磁电法渗漏模型试验
张化鹏(), 钱卫(), 刘瑾, 武立林, 宋泽卓
河海大学 地球科学与工程学院,江苏 南京 211100
Leakage model-based experimental study on magnetometric resistivity method combined with pseudo-random signal technology
ZHANG Hua-Peng(), QIAN Wei(), LIU Jin, WU Li-Lin, SONG Ze-Zhuo
School of Earth Sciences and Engineering, Hohai University,Nanjing 211100,China
全文: PDF(3629 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

磁电法是近些年在国内兴起的一种电磁勘探方法,该方法在探测地下渗流等长走向的良导地质体方面具有技术优势,但是其抗干扰能力差,易受外部噪声影响,一直未能推广。近年来,伪随机信号在物探领域开始广泛应用,该技术通过对冲激响应及阶跃响应进行卷积运算来达到降噪目的,可极大地提升抗干扰能力,因此,本文结合磁电法的勘探原理及伪随机辨识系统的辨识原理,提出将伪随机信号应用于磁电法中来提高其抗干扰能力,并通过渗漏模型试验来对其抗干扰情况进行分析,结合模拟计算结果验证其可行性。试验结果表明该方法降噪能力显著,可基本消除外部磁场干扰,在渗漏通道上方峰值处其相对误差小于3%,具有极强的抗干扰能力,为今后相关探测仪器的开发奠定了基础。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张化鹏
钱卫
刘瑾
武立林
宋泽卓
关键词 磁电法伪随机信号相关辨识渗漏通道模型试验    
Abstract

The magnetoelectric resistivity (MMR) method is a type of electromagnetic exploration method popular in China in recent years. It enjoys technical advantages in detecting long highly conductive geological bodies such as underground seepages. However, it is yet to be widely applied since it suffers poor anti-interference ability and is liable to be affected by external noises. In recent years, the pseudo-random signal technology has been widely used in the field of geophysical exploration. It allows noises to be reduced through the convolution operation of impulse and step responses, thus greatly improving the anti-interference ability. Based on the exploration principle of the magnetoelectric resistivity method and the principle of the pseudo-random identification system, this paper proposes the method of applying the pseudo-random signal technology to the magnetoelectric resistivity method to improve the anti-interference ability of the latter. Meanwhile, it analyzes the anti-interference effects through leakage model-based experiments, which have verified the feasibility of the proposed method. As indicated by the experimental results, the proposed method has remarkable noise reduction ability and can roughly eliminate the interference of external magnetic fields. Meanwhile, the relative errors at peaks above the leakage channel were less than 3%, indicating extremely strong anti-interference ability. This study lays a basis for the future development of related detection instruments.

Key wordsmagnetoelectric resistivity (MMR) method    pseudo random signal    correlation identification    leakage passage    model-based test
收稿日期: 2021-05-12      修回日期: 2021-09-28      出版日期: 2022-02-20
ZTFLH:  P631  
基金资助:国家重点研发计划项目“堰塞坝险情处置与开发利用保障技术与装备研发”(2018YFC1508501)
通讯作者: 钱卫
作者简介: 张化鹏(1997-),男,硕士,主要研究方向为地球物理。Email: 593763490@qq.com
引用本文:   
张化鹏, 钱卫, 刘瑾, 武立林, 宋泽卓. 基于伪随机信号的磁电法渗漏模型试验[J]. 物探与化探, 2022, 46(1): 198-205.
ZHANG Hua-Peng, QIAN Wei, LIU Jin, WU Li-Lin, SONG Ze-Zhuo. Leakage model-based experimental study on magnetometric resistivity method combined with pseudo-random signal technology. Geophysical and Geochemical Exploration, 2022, 46(1): 198-205.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2022.1259      或      https://www.wutanyuhuatan.com/CN/Y2022/V46/I1/198
Fig.1  线电流磁场计算
Fig.2  伪随机系统辨识计算步骤
Fig.3  伪随机磁电仪
Fig.4  水槽渗漏模型对比试验装置布置
Fig.5  测量区域
Fig.6  均匀场磁场等值线
Fig.7  模拟场磁场等值线
Fig.8  模拟拟合
Fig.9  实测磁场等值线
Fig.10  实测拟合
Fig.11  磁感应强度变化曲线
测点 B/nT 相对误差δ/%
测量结果ηai 计算结果 η ' ai
7 195 190 2.63%
12 192 187 2.67
28 202 205 -1.46
33 212 216 -1.85
49 206 208 -0.96
55 193 191 1.05
70 211 212 0.47
77 220 223 1.35
Table 1  峰值处磁感应强度数据
[1] Nabighian M N, Oppliger G L, Edwards R N, et al. Cross-hole magnetometric resistivity (MMR)[J]. The Leading Edge, 1984,49(8):1313-1326.
[2] Fathianpour N, Heinson G, White A. The total field magnetometric resistivity (TFMMR) method: Part 1: Theory and 2.5D forward modelling[J]. Exploration Geophysics, 2005,36(2):181-188.
doi: 10.1071/EG05181
[3] Edwards R N. The cross-hole magnetometric resistivity (MMR) response of a disc conductor[J]. Geophysical Prospecting, 2010,32(5):955-969.
doi: 10.1111/gpr.1984.32.issue-5
[4] Edwards R N, Lee H, Nabighian M N. On the theory of magnetometric resistivity (MMR) methods[J]. Geophysics, 2012,43(6):1176-1203.
doi: 10.1190/1.1440887
[5] Butler S L, Zhang Z. Forward modeling of geophysical electromagnetic methods using Comsol[J]. Computers and Geosciences, 2016,87(2):1-10.
doi: 10.1016/j.cageo.2015.11.004
[6] 励宝恒, 王式铭. 磁激发极化法[J]. 物探与化探, 1979,3(4):68-73.
[6] Li B H, Wang S M. Magnetic induced polarization method[J]. Geophysical and Geochemical Exploration, 1979,3(4):68-73.
[7] 傅良魁. 磁电勘探法原理[M]. 北京: 地质出版社, 1984.
[7] Fu L K. Principle of magnetoelectric exploration [M]. Beijing: Geological Publishing House, 1984.
[8] 杨建文. 起伏地形点电源地下传导电流磁场表达式:磁电阻率法地形改正[J]. 桂林冶金地质学院学报, 1991,11(1):77-87.
[8] Yang J W. Expression of magnetic field of underground conduction current of ups and downs point power supply: terrain correction by magnetoresistance method[J]. Journal of Guilin Institute of Metallurgical Geology, 1991,11(1):77-87.
[9] 邓靖武. 磁电法正演理论研究[D]. 北京:中国地质大学(北京), 2005.
[9] Deng J W. Forward theory study of magnetoelectric resistivity and induced polarization method [D]. Beijing: China University of Geosciences(Beijing), 2005.
[10] 翁爱华, 李斯睿, 杨悦, 等. 磁电法基本原理、发展现状及前景展望[J]. 吉林大学学报:地球科学版, 2017,47(6):1838-1854.
[10] Weng A H, Li S R, Yang Y, et al. Basic principle, current status and prospect of magnetoelectric resistivity[J]. Journal of Jilin University:Geoscience Edition, 2017,47(6):1838-1854.
[11] Ziolkowski A, Wright D. Removal of the airwave in shallow-marine transient EM data[J]. Seg Technical Program Expanded Abstracts, 2007,26(1):534.
[12] Ziolkowski A, Hobbs B A, Wright D. Multitransient electromagnetic demonstration survey in France[J]. Geophysics, 2007,72(4):F197-F209.
doi: 10.1190/1.2735802
[13] Ziolkowski A, Parr R, Wright D, et al. Multitransient electromagnetic repeatability experiment over the North Sea Harding field[J]. Geophysical Prospecting, 2010,58(6):1159-1176.
[14] Ziolkowski A. Wiener estimation of the Green’s function[J]. Geophysics, 2013,78(5):W31-W44.
doi: 10.1190/geo2013-0032.1
[15] 柴治媛. 可控震源伪随机扫描方法与地震响应的数值模拟[D]. 长春:吉林大学, 2007.
[15] Chai Z Y. Pseudo-random sweeping method and numerical simulation for seismic response based on a vibrator[D]. Changchun: Jilin University, 2007.
[16] 张群英, 方广有. 伪随机序列编码脉冲信号在探地雷达中的应用研究[J]. 电子与信息学报, 2011,33(2):424-428.
[16] Zhang Q F, Fang G Y. The study of pseudo random sequence’s application to GPR[J]. Journal of Electronics and Information, 2011,33(2):424-428.
[17] 何继善. 广域电磁法和伪随机信号电法[M]. 北京: 高等教育出版社, 2010.
[17] He J S. Wide area electromagnetic method and pseudo random signal electrical method [M]. Beijing: Higher Education Press, 2010.
[18] 罗延钟, 陆占国, 孙国良, 等. 伪随机信号电法仪器的“第二方案”算法[J]. 地球物理学进展, 2016,31(6):2604-2608.
[18] Luo Y Z, Lu Z G, Sun G L, et al. Algorithms of second solution for instruments of electrical and electromagnetic prospecting using pseudo random signal[J]. Progress in Geophysics, 2016,31(6):2604-2608.
[19] 罗延钟, 陆占国, 孙国良, 等. 相关辨识抗干扰性的再认识[J]. 地球物理学进展, 2020,35(2):760-766.
[19] Luo Y Z, Lu Z G, Sun G L, et al. Recognition of the anti-interference of correlation identification[J]. Progress in Geophysics, 2020,35(2):760-766.
[1] 周建兵, 罗锐恒, 贺昌坤, 潘晓东, 张绍敏, 彭聪. 文山小河尾水库岩溶含水渗漏通道的地球物理新证据[J]. 物探与化探, 2023, 47(3): 707-717.
[2] 何继善. 广域电磁法理论及应用研究的新进展[J]. 物探与化探, 2020, 44(5): 985-990.
[3] 王永兵, 何继善. 一种伪随机信号混合编码及其在油气压裂智能实时监测系统中的应用[J]. 物探与化探, 2020, 44(1): 74-80.
[4] 王寒冰, 封彪, 周鹏, 陆占国, 贾世俊, 高隆钦. 伪随机信号电法仪在河北某老矿山的应用[J]. 物探与化探, 2019, 43(3): 522-528.
[5] 王永兵, 何继善. WSJ-4伪随机信号多功能数字化激电仪接收系统的研制及其应用[J]. 物探与化探, 2014, 38(5): 1012-1017.
[6] 杨洋, 邓锋华, 李帝铨. 基于伪随机信号的大深度激发极化法 在油气勘探中的应用[J]. 物探与化探, 2013, 37(3): 438-442.
[7] 刘晓辉, 周四春, 童纯菡, 胡波. 地气模型中元素迁移规律[J]. 物探与化探, 2012, 36(6): 1050-1054.
[8] 唐大荣. 地面岩溶塌陷的高分辨地震勘查[J]. 物探与化探, 1994, 18(1): 35-39.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com