Please wait a minute...
E-mail Alert Rss
 
物探与化探  2019, Vol. 43 Issue (6): 1182-1190    DOI: 10.11720/wtyht.2019.0244
  地质调查·资源勘查 本期目录 | 过刊浏览 | 高级检索 |
深埋铁矿磁测数据三维反演分析与找矿靶区预测
朱裕振1, 强建科2(), 王林飞3, 张文艳2, 戴世坤2
1. 山东省煤田地质规划勘察研究院,山东 济南 250104
2. 中南大学 地球科学与信息物理学院,湖南 长沙 410083
3. 中国自然资源航空物探遥感中心,北京 100083
Three-dimensional inversion analysis of magnetic data from deep buried iron ore and prediction of prospecting target area
Yu-Zhen ZHU1, Jian-Ke QIANG2(), Lin-Fei WANG3, Wen-Yan ZHANG2, Shi-Kun DAI2
1. Shandong Coalfield Geological Planning and Investigation Institute, Jinan 250104,China
2. School of Earth Sciences and Information Physics, Central South University, Changsha 410083, China
3. China Aerospace Geophysical and Remote Sensing Center, Beijing 100083, China
全文: PDF(3022 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

寻找深埋铁矿床是一件非常复杂的探索性研究,目前面临的困难是铁磁异常较小,且淹没于大片含磁性的侵入浆岩体中,采用以往定性解释磁异常的方法可能会造成较大偏差,使勘探风险陡增。随着计算机技术的快速发展,大规模三维反演已经成为现实,笔者采用磁法三维反演软件对山东齐河—禹城地区面积性磁测数据进行了自动反演,获得了该地区地下空间磁化率分布,结合已有钻孔地质资料,分析了有铁矿存在时磁化率等值线在空间上有高值圈闭的特点,且圈闭中心比实际矿体位置偏浅约500 m左右。比照这个特征,从勘探区反演的三维磁化率数据中搜索南北和东西方向具有高磁异常圈闭的区域,发现了两个较可靠的找矿靶区。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱裕振
强建科
王林飞
张文艳
戴世坤
关键词 磁法勘探深埋铁矿磁测数据三维反演找矿靶区预测    
Abstract

The search for deep buried iron deposits is a very complicated exploratory study. The current difficulty is that the ferromagnetic anomalies are small and submerged in large magnetic intrusive rock masses. It may cause large deviations and increase the risk of exploration. With the rapid development of computer technology, large-scale three-dimensional inversion has become a reality. This paper uses GMES-3DI commercialization software to automatically invert the area magnetic data of Qihe-Yucheng area in Shandong Province, and obtains the magnetic susceptibility of underground space in this area. Based on the distribution and combined with the existing geological data of boreholes, the authors revealed the characteristics of the magnetic susceptibility contours with high value traps in the presence of iron ore, with the trap center being about 500 m shallower than the actual orebody position. Based on this feature, the authors used the three-dimensional magnetic susceptibility data retrieved from the exploration area to search for areas with high magnetic anomaly traps in the north-south and east-west directions and, as a result, delineated two relatively reliable prospecting targets.

Key wordsmagnetic exploration    deep buried iron ore    three-dimensional inversion of magnetic survey data    prediction of prospecting target
收稿日期: 2019-04-28      出版日期: 2019-11-28
:  P618  
基金资助:国家重点基础研究发展计划项目(2017YFC0602201);国家重点基础研究发展计划项目(2017YFC0602204);山东省煤田地质局科研专项奖励基金“基于多元地球物理探测技术的深部富铁矿找矿预测研究”项目(鲁煤地科字20171号)
通讯作者: 强建科
作者简介: 朱裕振(1985-),男,工程师,从事综合地球物理勘探工作。Email:277628696@qq.com
引用本文:   
朱裕振, 强建科, 王林飞, 张文艳, 戴世坤. 深埋铁矿磁测数据三维反演分析与找矿靶区预测[J]. 物探与化探, 2019, 43(6): 1182-1190.
Yu-Zhen ZHU, Jian-Ke QIANG, Lin-Fei WANG, Wen-Yan ZHANG, Shi-Kun DAI. Three-dimensional inversion analysis of magnetic data from deep buried iron ore and prediction of prospecting target area. Geophysical and Geochemical Exploration, 2019, 43(6): 1182-1190.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2019.0244      或      https://www.wutanyuhuatan.com/CN/Y2019/V43/I6/1182
Fig.1  区域地质构造略图
Fig.2  区域岩浆岩分布示意
Fig.3  地面1:1万高精度磁异常平面等值线
Fig.4  磁测数据三维反演切片示意
a—实测数据平面分布;b—三维反演磁化率纵深切片;c—三维反演磁化率水平切片;d—三维反演磁化率大于0.0105SI
Fig.5  磁法三维反演8个水平切片磁化率等值线
Fig.6  穿过ZK1和ZK0701南北向剖面磁化率等值线
Fig.7  穿过ZK1和ZK0701东西向剖面磁化率等值线
a—南北坐标为72196;b—南北坐标为71776
Fig.8  预测1号异常SN-EW磁化率等值线剖面
a—南北坐标为75131;b—东西坐标为51195
Fig.9  预测2号异常SN-EW磁化率等值线剖面
a—南北坐标为708021;b—东西坐标为57610
[1] 李厚民, 王瑞江, 肖克炎 , 等. 立足国内保障国家铁矿资源需求的可行性分析[J]. 地质通报, 2010,29(1):1-7.
[1] Li H M, Wang R J, Xiao K Y , et al. Feasibility analysis of ensuring iron demand mainly by domestic resources[J]. Geological Bulletin of China, 2010,29(1):1-7.
[2] 叶天竺, 薛建玲 . 金属矿床深部找矿中的地质研究[J]. 中国地质, 2007,34(5):855-868.
[2] Ye T Z, Xue J L . Geological study in search of metallic ore deposits at depth[J]. Geology in China, 2007,34(5):855-868.
[3] 滕吉文, 杨立强, 姚敬全 , 等. 金属矿产资源的深部找矿、勘探与成矿的深层动力过程[J]. 地球物理学进展, 2007,22(2):317-334.
doi:
[3] Teng J W, Yang L Q, Yao J Q , et al. Deep disscover ore、exploration and exploitation for metal mineral resocrces and its deep dynamical process of formation[J]. Progress in Geophysics, 2007,22(2):317-334.
[4] 熊盛青, 于长春, 王卫平 , 等. 直升机大比例尺航空物探在深部找矿中的应用前景[J]. 地球科学进展, 2008,23(3):270-274.
[4] Xiong S Q, Yu C C, Wang W P , et al. Large scale aero geophysical survey with helicopter and its application to deep ore prospecting[J]. Advances in earth science, 2008,23(3):270-274.
[5] 熊光楚 . 矿产预测中重磁异常变换的若干问题二、向上延拓的作用及问题[J]. 物探与化探, 1992,16(5):358-364.
[5] Xiong G C . Some problems concerning the transformation of gravity and magnetic anomalies in prognosis of ore resources[J]. Geophysical & geochemical exploration, 1992,16(5):358-364.
[6] 李庆阳, 王艳梅, 邓霜岭 . 新疆若羌县阿尔金山脉里维齐明隐伏铁矿床地面磁异常特征[J]. 物探与化探, 2010,34(3):286-288.
[6] Li Q Y, Wang Y M, Deng S L . The ground magnetic anomaly characteristics of the Altun Mountain Liweiqi-ming hidden iron ore deposit in Ruoqiang county, Xinjiang Uygur autonomous region[J]. Geophysical & Geochemical Exploration, 2010,34(3):286-288.
[7] 权开珠, 权开兄 . 高精度磁测在白尕湖铁矿勘探中的应用[J]. 青海科技, 2011,2:77-81.
[7] Quan K Z, Quan K X . Application of high precision magnetic measurement in exploration of Baiji Lake iron ore[J]. Qinghai Technology, 2011,2:77-81.
[8] 孙荣厚, 张园, 李万荣 . 地面高精度磁法在建平大黑山铁矿区中的应用[J]. 化工矿产地质, 2012,34(3):178-182.
[8] Sun R H, Zhang Y, Li W R . On application of magnetic prospecting on earth surface finding iron mine in Liaoning Jianping Daheishan area[J]. Geology of chemical minerals, 2012,34(3):178-182.
[9] 黄临平, 管志宁 . 利用磁异常总梯度模确定磁源边界位置[J]. 华东地质学院学报, 1998,21(2):143-150.
[9] Huang L P, Guan Z N . The determination of magnetic causative boundaries using total gradient modules of magnetic anomalies[J]. Journal of East China Geological Institute, 1998,21(2):143-150.
[10] 张陶 . 二度体磁异常总梯度模反演与应用[D]. 成都:成都理工大学, 2011.
[10] Zhang T . Dimensional magnetic anomaly inversion and application of the total gradient mode[D]. Chengdu: Chengdu University of Technology, 2011.
[11] 孟慧 . 磁梯度张量正演、延拓、数据解释方法研究[D]. 长春:吉林大学, 2012.
[11] Meng H . Forward modeling, continuation and data Interpretation of magnetic gradient tensor[D]. Changchun: Jilin University, 2012.
[12] 牟启博 . 磁异常转换模量(MMTs)的特征及应用[D]. 南昌:东华理工大学, 2013.
[12] Mou Q B . The magnitude magnetic transform(MMTs)’s characteristics and application[D]. Nanchang: East China Institute of Technology, 2013.
[13] 管志宁, 刘天佑 . 二维磁异常频率域最优化反演方法[J]. 物化探计算技术, 1985,7(4):300-309.
[13] Guan Z N, Liu T Y . Optimal inversion method in frequency domain of two-dimensional magnetic anomalies[J]. Geophysical and Geochemical Prospecting Computing Technology, 1985,7(4):300-309.
[14] 程方道, 王国祥 . 重磁位场波谱理论及其应用[M]. 长沙: 中南工业大学出版社, 1987.
[14] Cheng F D, Wang G X. Gravity and magnetic potential field spectroscopy theory and its application [M]. Changsha: Central South University of Technology Press, 1987.
[15] 管志宁 . 地磁场与磁力勘探[M]. 北京: 地质出版社, 2005.
[15] Guan Z N. Geomagnetic field and magnetic exploration [M]. Beijing: Geological Publishing Press, 2005.
[16] 欧洋, 刘天佑, 冯杰 , 等. 磁异常总梯度模量反演[J]. 地球物理学进展, 2013,28(5):2680-2687.
doi: 10.6038/pg20130550
[16] Ou Y, Liu T Y, Feng J , et al. Inversion of magnetic total gradient modulus[J]. Progress in Geophysics, 2013,28(5):2680-2687.
[17] 罗新刚 . 二度体位场边缘参数反演方法对比研究[D]. 西安:长安大学, 2017.
[17] Luo X G . Study of contrast on inversion method of edge parameter of two dimensional body[D]. Xi’an: Chang’an University, 2017.
[18] 姚长利, 郝天珧, 管志宁 . 重磁反演约束条件及三维物性反演技术策略[J]. 物探与化探, 2002,26(4):253-257.
[18] Yao C L, Hao T Y, Guang Z N . Restrictions in gravity and magnetic inversions and technical strategy of 3D properties inversion[J]. Geophysical & Geochemical Exploration, 2002,26(4):253-257
[19] 张华, 李世峰 . 磁异常反演系统的应用——以苏尼特左旗镍矿勘探为例[J]. 矿业工程研究, 2010,25(1):45-48.
[19] Zhang H, Li S F . The application of magnetic anomaly inver sion system: taking Nickel Mine in Sunitezuoqi surveying for example[J]. Mineral Engineering Research, 2010,25(1):45-48.
[20] 雷文敏, 吴健生 . 南海东北部陆缘基底磁异常反演与解释[J]. 同济大学学报:自然科学版, 2012,40(11):1125-1129.
[20] Lei W M, Wu J S . Inversion and interpretation of magnetic anomalies at northeastern margin basement of the South China Sea[J]. Journal of Tongji University: Natural Science, 2012,40(11):1125-1129.
[21] 刘天佑 . 西藏朗县秀沟铬铁矿高精度重磁勘探效果[J]. 物探与化探, 2012,36(3):325-331.
[21] Liu T Y . The effects of using high-precision gravity and magnetic methods to explore chromite in the Xiugou iron deposit, Langxian County, Tibet[J]. Geophysical and Geochemical Exploration, 2012,36(3):325-331.
[22] 兰学毅, 杜建国, 严加永 , 等. 基于先验信息约束的重磁三维交互反演建模技术——以铜陵矿集区为例[J]. 地球物理学报, 2015,58(12):4436-4449.
[22] Lan X Y, Du J G, Yan J Y , et al. 3D gravity and magnetic interactive inversion modeling based on prior information: a case study of the Tongling ore concentration area[J]. Chinese Journal Geophys., 2015,58(12):4436-4449.
[23] 周子阳, 常树帅, 宁媛丽 , 等. 2.5D人机交互反演在航磁异常解释中的应用[J]. 物探与化探, 2016,40(6):1232-1236.
[23] Zhou Z Y, Chang S S, Ning Y L , et al. The application of 2.5D human-computer interaction inversion to aeromagnetic anomaly interpretation[J]. Geophysical and Geochemical Exploration, 2016,40(6):1232-1236.
[24] 李泽林, 姚长利, 郑元满 , 等. 数据空间磁异常模量三分量反演[J]. 地球物理学报, 2015,58(10):3804-3814.
[24] Li Z L, Yao C L, Zheng Y M , et al. 3D data-space inversion of magnetic amplitude data[J]. Chinese Journal Geophys, 2015,58(10):3804-3814.
[25] 朱欲振, 周明磊, 高志军 , 等. 山东齐河—禹城地区矽卡岩型富铁矿的发现及其意义[J]. 地质通报, 2018,37(5):938-944.
[25] Zhu Y Y, Zhou M L, Gao Z J , et al. The discovery of the Qihe-Yucheng skarn type rich iron deposit in Shandong and its exploration significance[J]. Geological Bulletin of China, 2018,37(5):938-944.
[1] 郭楚枫, 张世晖, 刘天佑. 三维磁场有限元—无限元耦合数值模拟[J]. 物探与化探, 2021, 45(3): 726-736.
[2] 王昊, 严加永, 孟贵祥, 吕庆田, 王栩. 地磁梯度测量及其在金属矿勘查中的试验——以拉依克勒克铜铁矿为例[J]. 物探与化探, 2019, 43(6): 1173-1181.
[3] 宋双, 张恒磊. 向下延拓在深部矿产勘探中的应用——以青海某矿区为例[J]. 物探与化探, 2014, 38(6): 1195-1199.
[4] 张天龙, 张维, 王忠义, 张福斌, 李斌, 杨立伟. 冀东滦南一带重磁异常特征及找矿意义[J]. 物探与化探, 2014, 38(4): 641-648.
[5] 郭莹, 曲赞, 范志雄, 王传雷. 关于磁测工作质量检查方式的实验及讨论[J]. 物探与化探, 2014, 38(4): 781-786.
[6] 吴志春, 郭福生, 谢财富, 刘林清, 姜勇彪. 江西省相山铀多金属矿田 重磁坡度异常提取与成矿预测[J]. 物探与化探, 2013, 37(3): 453-460.
[7] 郭莹, 王远清, 范志雄, 王传雷, 柳超. 磁力仪探头之间安全距离的实验与认识[J]. 物探与化探, 2012, 36(6): 966-969.
[8] 梁学堂, 全浩理, 马玄龙, 李义. 湖北大冶铜山口地区地球物理深部找矿模式[J]. 物探与化探, 2012, 36(4): 697-704.
[9] 张恒磊, 刘天佑, 朱朝吉, 周肇武. 区域地质调查与资源勘查高精度磁测找矿效果——以青海尕林格矿区为例[J]. 物探与化探, 2011, 35(1): 12-16.
[10] 李庆阳, 王艳梅, 邓霜岭. 新疆若羌县阿尔金山脉里维齐明隐伏铁矿床地面磁异常特征[J]. 物探与化探, 2010, 34(3): 286-288.
[11] 艾斯卡尔, 李华. 关于磁法勘探测点坐标的生成与工作部署图绘制[J]. 物探与化探, 2010, 34(2): 250-252.
[12] 张恒磊, 刘天佑. 基于小波分析的磁测数据处理流程及解释方法[J]. 物探与化探, 2009, 33(6): 686-690.
[13] 郭友钊, 刘海良, 张余芝, 李宜运, 李磊. 湘南骑田岭地区锡多金属矿的岩石磁学研究[J]. 物探与化探, 2006, 30(6): 521-524.
[14] 袁志文, 吴天彪. 浅水中磁性柱状体的磁场特征[J]. 物探与化探, 2005, 29(6): 530-532.
[15] 林君, 嵇艳鞠, 于生宝, 王忠, 王静, 王艳, 周国华, 吴国强. ATEM-Ⅱ型瞬变电磁系统的实际应用[J]. 物探与化探, 2004, 28(6): 496-499.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com