Please wait a minute...
E-mail Alert Rss
 
物探与化探  2012, Vol. 36 Issue (4): 598-601,606    DOI: 10.11720/wtyht.2012.4.17
  方法技术研究 本期目录 | 过刊浏览 | 高级检索 |
煤火区浅部松散煤体及采空区的探地雷达响应特征
胡明顺, 潘冬明, 董守华, 李娟娟
中国矿业大学 资源与地球科学学院, 江苏 徐州 221116
GPR RESPONSE CHARACTERISTICS OF SHALLOW LOOSE COAL SEAM AND GOAF IN THE COALFIELD COMBUSTION AREA
HU Ming-shun, PAN Dong-ming, DONG Shou-hua, LI Juan-juan
School of Resource and Geosciences, China University of Mining & Technology, Xuzhou 221116, China
全文: PDF(1012 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 探地雷达对浅层勘探具有较高分辨率,为煤田火区浅部松散煤体或采空区等典型火源地质结构探测提供了重要手段。然而如何识别各种火源地质结构体,确定火区重点范围还存在一定的理论不足。基于电磁波理论,采用时域有限差分法正演模拟了火区典型地质体地电模型雷达响应,其特征表现为:松散跨塌煤体对应雷达响应绕射波严重,其内部波形紊乱;空洞区顶界面回波能量强,较为连续,其内部无绕射。正演模拟和现场测试研究表明:探地雷达对识别浅埋火区煤层松散跨落程度,圈定火烧重点区域,减少灭火成本和火区开采安全事故具有重要的现实意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
Abstract:With high resolution for shallow exploration, Ground Penetrating Radar (GPR) provides an significant means for exploring typical geological structures like loose coal seam and goaf in the coalfield combustion area. However, it is difficult for GPR to distinguish various kinds of burning geological structures and delineate the key combustion area because of shortage of theories. Based on electromagnetic wave theory, the authors conducted forward simulation of the geoelectric models of typical burned coal in the coalfield combustion area by using Finite Difference Time Domain (FDTD). The radar response characteristics of numerical computation indicate that serious diffracted waves appear from the part of loose collapse coal seam, and reflected waves from the top of the cavity have high energy and are continuous. Forward simulation and field test demonstrate that, with GPR, we can distinguish the loose degree of the burning coal seam and delineate the key combustion area so as to reduce the cost of fire-fighting. This is of great significance for safe combustion mining.
收稿日期: 2011-06-10      出版日期: 2012-08-10
:  P631  
基金资助:

国家重大专项(2008ZX05035-003);国家重点基础研究发展计划项目(2009CB219603);江苏省普通高校研究生科研创新计划 项目(CXLX11-0334)

作者简介: 胡明顺(1985-),男,中国矿业大学博士研究生,主要研究方向为煤田地球物理正演模拟和成像方法。
引用本文:   
胡明顺, 潘冬明, 董守华, 李娟娟. 煤火区浅部松散煤体及采空区的探地雷达响应特征[J]. 物探与化探, 2012, 36(4): 598-601,606.
HU Ming-shun, PAN Dong-ming, DONG Shou-hua, LI Juan-juan. GPR RESPONSE CHARACTERISTICS OF SHALLOW LOOSE COAL SEAM AND GOAF IN THE COALFIELD COMBUSTION AREA. Geophysical and Geochemical Exploration, 2012, 36(4): 598-601,606.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2012.4.17      或      https://www.wutanyuhuatan.com/CN/Y2012/V36/I4/598
[1] 张秀山.新疆煤田火烧区特征及灭火问题探讨[J].中国煤田地质,2004,16(1).

[2] Dallimore S R, Davis J L. Ground probing radar investigations of massive ground ice and near-surface geology in continuous permafrost[J].Current Research, Part A, Geological Survey of Canada Paper 87-1a, 1987:913-918.

[3] Daniels J J, Keller G V,et al. Computer-assisted interpretation of electromagnetic soundings over a permafrost section[J].Geophysics,1976,41:752-765..

[4] Strange A D, Ralston J C, Chandran V. Application of ground penetrating radar technology for near-surface interface determination in coal mining[J]. IEEE ICASSP, 2005, 701-704.

[5] Davis J L, Annan A P. Ground-penetrating radar for high resolution mapping of soil and rock stratigraphy[J].Geophysical Prospecting, 1989,37.

[6] Wu T,Shu X L,Cheng G, et al. Using ground-penetrating radar to detect permafrost degradation in the northern limit of permafrost on the Tibetan Plateau[J].Cold Regions Science and Technology, 2005, 41.

[7] 薛桂霞,王鹏.探地雷达时域有限差分法正演模拟[J].物探与化探, 2006,30(3).

[8] 李成方,王绪本,薛克勤,等.偏移技术在GPR资料处理中的研究[J].物探与化探, 2004, 28(5).

[9] Yee K. Numerical solution of initial boundary value Problems involving Maxwell's equations in isotropic media[J].IEEE Transactions on Antennas and Propagation,1966, AP-14(3).

[10] 葛德彪,闰玉波.电磁波时域有限差分方法.第二版[M].西安:西安电子科技大学出版社,2005.

[11] 王长清,祝西里.电磁场计算中的时域有限差分法[M].北京:北京大学出版社,1994.

[12] Fang J, Wu Z. Generalized perfectly matched layer-An extension of Berenger's perfectly matched layer boundary condition[J].IEEE Microwave and Guided Wave Letters, 1995,5(12).
[1] 陈秀娟, 刘之的, 刘宇羲, 柴慧强, 王勇. 致密储层孔隙结构研究综述[J]. 物探与化探, 2022, 46(1): 22-31.
[2] 肖关华, 张伟, 陈恒春, 卓武, 王艳君, 任丽莹. 浅层地震技术在济南地下空间探测中的应用[J]. 物探与化探, 2022, 46(1): 96-103.
[3] 石磊, 管耀, 冯进, 高慧, 邱欣卫, 阙晓铭. 基于多级次流动单元的砂砾岩储层分类渗透率评价方法——以陆丰油田古近系文昌组W53油藏为例[J]. 物探与化探, 2022, 46(1): 78-86.
[4] 陈大磊, 王润生, 贺春艳, 王珣, 尹召凯, 于嘉宾. 综合地球物理探测在深部空间结构中的应用——以胶东金矿集区为例[J]. 物探与化探, 2022, 46(1): 70-77.
[5] 周能, 邓可晴, 庄文英. 基于线性放电法的多道脉冲幅度分析器设计[J]. 物探与化探, 2022, 46(1): 221-228.
[6] 吴燕民, 彭正辉, 元勇虎, 朱今祥, 刘闯, 葛薇, 凌国平. 一种基于差分接收的电磁感应阵列探头的设计与实现[J]. 物探与化探, 2022, 46(1): 214-220.
[7] 王猛, 刘媛媛, 王大勇, 董根旺, 田亮, 黄金辉, 林曼曼. 无人机航磁测量在荒漠戈壁地区的应用效果分析[J]. 物探与化探, 2022, 46(1): 206-213.
[8] 张化鹏, 钱卫, 刘瑾, 武立林, 宋泽卓. 基于伪随机信号的磁电法渗漏模型试验[J]. 物探与化探, 2022, 46(1): 198-205.
[9] 张建智, 胡富杭, 刘海啸, 邢国章. 煤矿老窑采空区地—井TEM响应特征[J]. 物探与化探, 2022, 46(1): 191-197.
[10] 张宇哲, 孟麟, 王智. 基于Gmsh的起伏地形下井—地直流电法正演模拟[J]. 物探与化探, 2022, 46(1): 182-190.
[11] 马德志, 王炜, 金明霞, 王海昆, 张明强. 海上地震勘探斜缆采集中鬼波产生机理及压制效果分析[J]. 物探与化探, 2022, 46(1): 175-181.
[12] 张洁. 基于拉伸率的3DVSP道集切除技术及应用[J]. 物探与化探, 2022, 46(1): 169-174.
[13] 丁骁, 莫思特, 李碧雄, 黄华. 混凝土内部裂缝对电磁波传输特性参数的影响[J]. 物探与化探, 2022, 46(1): 160-168.
[14] 崔瑞康, 孙建孟, 刘行军, 文晓峰. 低阻页岩电阻率主控因素研究[J]. 物探与化探, 2022, 46(1): 150-159.
[15] 陈亮, 付立恒, 蔡冻, 李凡, 李振宇, 鲁恺. 基于模拟退火法的磁共振测深多源谐波噪声压制方法[J]. 物探与化探, 2022, 46(1): 141-149.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com