Please wait a minute...
E-mail Alert Rss
 
物探与化探  2025, Vol. 49 Issue (5): 1090-1098    DOI: 10.11720/wtyht.2025.0037
  方法研究信息处理仪器研制 本期目录 | 过刊浏览 | 高级检索 |
川东北探区层析与全波形反演联合建模方法及应用
国运东()
中国石化中原油田分公司 物探研究院,河南 濮阳 457001
Tomography-FWI modeling method and its application for the exploration area of northeastern Sichuan Basin,China
GUO Yun-Dong()
Geophysical Exploration Research Institute,Zhongyuan Oilfield Company,SINOPEC,Puyang 457001,China
全文: PDF(11017 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

普光探区由于受多期构造运动作用,地表、地下双复杂,膏盐等特殊地质体刻画不精细,导致速度场建立不准确,严重降低了成像质量,制约了油气的精细勘探开发。为了提高速度建模精度,改善复杂构造的地震建模与成像效果,本文开展复杂山地全波形反演联合速度建模方法应用研究,形成针对普光探区的基于全波形反演的深度域速度建模流程。通过层析与全波形联合反演,并引入地质信息的约束来提升全波形反演的稳定性,使模型与地下构造更加匹配,通过实际资料测试,全波形反演技术可以显著提升复杂转换带的速度模型的细节刻画精度,对普光大湾—毛坝的复杂构造成像改善作用明显。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
国运东
关键词 全波形反演深度域偏移速度建模普光探区    
Abstract

The Puguang exploration area in the northeastern Sichuan Basin,China,is characterized by complex surface and subsurface conditions due to the influence of multistage tectonic movements.This dual complexity poses a challenge to precisely characterizing special geobodies like anhydrites in this area,leading to inaccurate velocity field establishment.Consequently,the seismic imaging quality is severely degraded,hindering the fine-scale exploration and production of oil and gas.To enhance velocity modeling accuracy and improve seismic modeling and imaging effects for complex structures,this study investigated the application of a joint velocity modeling method integrating full waveform inversion(FWI) for complex mountainous terrain.A depth-domain velocity modeling workflow based on FWI was developed for the Puguang exploration area.The joint inversion combining tomography and FWI,enhanced by incorporating geological constraints to improve FWI stability,results in a velocity model that effectively matches the subsurface structures.The test using actual data demonstrates that FWI can significantly improve the detail characterization accuracy of velocity models for complex transition zones.This improvement is particularly evident in the enhanced imaging of complex structures in the Dawan and Maoba blocks in the Puguang exploration area.

Key wordsfull waveform inversion(FWI)    depth migration    velocity modeling    Puguang exploration area
收稿日期: 2025-03-24      修回日期: 2025-07-04      出版日期: 2025-10-20
ZTFLH:  P631.4  
基金资助:国家科技重大专项课题(2024ZD14001-004);中石化集团公司项目(P23142)
作者简介: 国运东(1991-),男,博士(后),副研究员,2020年毕业于中国石油大学(华东),研究方向为全波形反演。Email:gyd_upc@edu.cn
引用本文:   
国运东. 川东北探区层析与全波形反演联合建模方法及应用[J]. 物探与化探, 2025, 49(5): 1090-1098.
GUO Yun-Dong. Tomography-FWI modeling method and its application for the exploration area of northeastern Sichuan Basin,China. Geophysical and Geochemical Exploration, 2025, 49(5): 1090-1098.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2025.0037      或      https://www.wutanyuhuatan.com/CN/Y2025/V49/I5/1090
Fig.1  联合速度建模流程
Fig.2  深度域速度场对比
Fig.3  地质约束前(a)、后(b)的速度对比
Fig.4  川东北探区复杂地表下的地震数据
Fig.5  不同地震数据对比
Fig.6  不同地震数据频谱示意
Fig.7  全波形反演前后的速度对比
Fig.8  全波形反演前后的成像效果
Fig.9  基于不同偏移方法的全波形反演成像效果对比
Fig.10  老成果剖面与新成果剖面对比
Fig.11  老成果与新成果速度对比
Fig.12  M3井老成果剖面与新成果剖面对比
[1] 马永生. 四川盆地普光超大型气田的形成机制[J]. 石油学报, 2007, 28(2):9-14,21.
doi: 10.7623/syxb200206002
[1] Ma Y S. Formation mechanism of Puguang super-large gas field in Sichuan Basin[J]. Acta Petrolei Sinica, 2007, 28(2):9-14,21.
[2] 马永生, 蔡勋育, 赵培荣, 等. “川气东送”工程资源基础与前景[J]. 中国工程科学, 2010, 12(5):73-77.
[2] Ma Y S, Cai X Y, Zhao P R, et al. Resource base and prospects of the “West-to-East Gas Pipeline” project[J]. Engineering Sciences, 2010, 12(5):73-77.
[3] 李庆洋, 黄建平, 李振春, 等. 去均值归一化互相关最小二乘逆时偏移及其应用[J]. 地球物理学报, 2016, 59(8):3006-3015.
doi: 10.6038/cjg20160823
[3] Li Q Y, Huang J P, Li Z C, et al. Least-squares reverse time migration using de-mean normalized cross-correlation and its application[J]. Chinese Journal of Geophysics, 2016, 59(8):3006-3015.
[4] 郑靖甲, 徐秀刚, 许文德. 基于纵横波解耦及行波分离的弹性波逆时偏移成像[J]. 地球物理学报, 2024, 67(12):4748-4758.
[4] Zheng J J, Xu X G, Xu W D. Elastic reverse time migration imaging based on P/S wave decoupling and wavefield separation[J]. Chinese Journal of Geophysics, 2024, 67(12):4748-4758.
[5] 欧阳甜子. 叠前逆时偏移在普光地区的应用研究[J]. 非常规油气, 2016, 3(3):39-43.
[5] Ouyang T Z. Application research of prestack reverse time migration in Puguang area[J]. Unconventional Oil & Gas, 2016, 3(3):39-43.
[6] 李继伟, 李光鹏, 刁永波, 等. 复杂山地深度域地震成像处理方法——以龙门山山前带海棠铺复杂构造区为例[J]. 石油物探, 2024, 63(3):578-588.
doi: 10.12431/issn.1000-1441.2024.63.03.006
[6] Li J W, Li G P, Diao Y B, et al. Seismic imaging processing method in depth domain for complex mountainous areas:A case study of Haitangpu complex structural belt in Longmenshan piedmont zone[J]. Geophysical Prospecting for Petroleum, 2024, 63(3):578-588.
[7] 丁博钊, 杨静, 万学娟, 等. 柴达木盆地英中地区下干柴沟组盐间复杂断裂识别[J]. 石油地球物理勘探, 2024, 59(5):1155-1164.
[7] Ding B Z, Yang J, Wan X J, et al. Identification of complex inter-salt faults in the Lower Ganchaigou Formation of Yingzhong area,Qaidam Basin[J]. Oil Geophysical Prospecting, 2024, 59(5):1155-1164.
[8] 方勇, 温铁民, 李虹, 等. 多方位网格层析成像技术及应用效果[J]. 物探化探计算技术, 2016, 38(5):677-680.
[8] Fang Y, Wen T M, Li H, et al. Multi-azimuth grid tomography technique and its application effect[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2016, 38(5):677-680.
[9] 蔡杰雄. 高斯束偏移与高斯束层析反演速度建模[J]. 石油物探, 2018, 57(2):262-273.
doi: 10.3969/j.issn.1000-1441.2018.02.012
[9] Cai J X. Gaussian beam migration and Gaussian beam tomography inversion velocity modeling[J]. Geophysical Prospecting for Petroleum, 2018, 57(2):262-273.
[10] 陈超, 李振春, 黄建平. 基于衰减补偿的多分量自适应聚焦束偏移[J]. 中国石油大学学报:自然科学版, 2024, 48(4):80-91.
[10] Chen C, Li Z C, Huang J P. Attenuation-compensated multicomponent adaptive focused beam migration[J]. Journal of China University of Petroleum:Edition of Natural Science, 2024, 48(4):80-91.
[11] 刘旭明, 陈文贵, 唐进, 等. 地质约束速度建模在复杂构造区叠前深度偏移中的应用[J]. 地球物理学进展, 2021, 36(2):759-765.
[11] Liu X M, Chen W G, Tang J, et al. Application of geology-constrained velocity modeling in pre-stack depth migration for complex structural areas[J]. Progress in Geophysics, 2021, 36(2):759-765.
[12] Tarantola A. Inversion of seismic reflection data in the acoustic approximation[J]. Geophysics, 1984, 49(8):1259-1266.
[13] Tarantola A. Inverse problem theory:Methods for data fitting and model parameter estimation[J]. Physics of the Earth & Planetary Interiors, 1987, 57(3):350-351.
[14] Pratt R G. Seismic waveform inversion in the frequency domain,Part 1:Theory and verification in a physical scale model[J]. Geophysics, 1999, 64(3):888-901.
[15] 国运东. 基于组合震源编码的多尺度全波形反演方法[J]. 物探与化探, 2022, 46(3):729-736.
[15] Guo Y D. Multi-scale full waveform inversion method based on combined source encoding[J]. Geophysical and Geochemical Exploration, 2022, 46(3):729-736.
[16] 张红静, 贺慧丽, 孙文博, 等. 基于变差分系数的变网格弹性波全波形反演[J]. 石油地球物理勘探, 2024, 59(3):514-522.
[16] Zhang H J, He H L, Sun W B, et al. Variable-grid elastic full waveform inversion based on variable difference coefficients[J]. Oil Geophysical Prospecting, 2024, 59(3):514-522.
[17] 陈琳枝, 赵秀莲, 邢雯淋, 等. FWI速度建模技术在涠西探区的应用研究[J]. 海洋石油, 2024, 44(4):15-18,24.
[17] Chen L Z, Zhao X L, Xing W L, et al. Application of FWI velocity modeling technology in Weixi exploration area[J]. Offshore Oil, 2024, 44(4):15-18,24.
[18] 时新宇, 杨华臣, 张建中. 海洋拖缆与海底节点资料联合全波形反演[J]. 石油地球物理勘探, 2024, 59(5):1058-1068.
[18] Shi X Y, Yang H C, Zhang J Z. Joint full waveform inversion of marine streamer and ocean bottom node data[J]. Oil Geophysical Prospecting, 2024, 59(5):1058-1068.
[19] 陈子龙, 王海燕, 郭华, 等. 地震全波形反演研究进展与应用现状综述[J]. 物探与化探, 2023, 47(3):628-637.
[19] Chen Z L, Wang H Y, Guo H, et al. Review on research progress and application status of seismic full waveform inversion[J]. Geophysical and Geochemical Exploration, 2023, 47(3):628-637.
[20] 杨顶辉, 董兴朋, 黄建东, 等. 高分辨率全波形地震成像研究——进展、挑战与展望[J]. 中国科学:地球科学, 2025, 55(2):319-347.
[20] Yang D H, Dong X P, Huang J D, et al. High-resolution full-waveform seismic imaging:Progress,challenges,and prospects[J]. Science China Earth Sciences, 2025, 55(2):319-347.
[21] 刘玉柱, 黄鑫泉, 万先武, 等. 各向异性介质弹性波多参数全波形反演[J]. 地球物理学报, 2019, 62(5):1809-1823.
doi: 10.6038/cjg2019M0176
[21] Liu Y Z, Huang X Q, Wan X W, et al. Multi-parameter full waveform inversion of elastic waves in anisotropic media[J]. Chinese Journal of Geophysics, 2019, 62(5):1809-1823.
[22] 胡光辉, 王立歆, 王杰, 等. 基于早至波的特征波波形反演建模方法[J]. 石油物探, 2015, 54(1):71-76.
doi: 10.3969/j.issn.1000-1441.2015.01.010
[22] Hu G H, Wang L X, Wang J, et al. Characteristic wave waveform inversion modeling method based on early arrivals[J]. Geophysical Prospecting for Petroleum, 2015, 54(1):71-76.
[23] Fichtner A. Multiscale full waveform inversion[J]. Geophysical Journal International, 2013, 194(1):534-556.
[24] 国运东, 孟凡冰, 秦广胜, 等. 基于动态平面波的三维多尺度全波形反演方法[J]. 石油物探, 2022, 61(4):616-624.
doi: 10.3969/j.issn.1000-1441.2022.04.0053
[24] Guo Y D, Meng F B, Qin G S, et al. Three-dimensional multi-scale full waveform inversion method based on dynamic plane wave[J]. Geophysical Prospecting for Petroleum, 2022, 61(4):616-624.
[25] Fichtner A. Multiscale full waveform inversion[J]. Geophysical Journal International, 2013, 194(1):534-556.
[26] Sirgue L, Pratt R G. Efficient waveform inversion and imaging:A strategy for selecting temporal frequencies[J]. Geophysics, 2004, 69(24):231-248.
[27] 黄建平, 杨秀金, 张鑫, 等. 面向深部地热岩体的弹性波逆时偏移成像方法[J]. 中国石油大学学报:自然科学版, 2024, 48(1):55-62.
[27] Huang J P, Yang X J, Zhang X, et al. Elastic reverse time migration imaging method for deep geothermal rock mass[J]. Journal of China University of Petroleum:Edition of Natural Science, 2024, 48(1):55-62.
[28] 谷丙洛, 韩建光, 陈军, 等. 碳酸盐岩油气储层高精度成像方法研究[J]. 地质学报, 2020, 94(8):2534-2544.
[28] Gu B L, Han J G, Chen J, et al. Research on high-precision imaging methods for carbonate oil and gas reservoirs[J]. Acta Geologica Sinica, 2020, 94(8):2534-2544.
[1] 汪昆, 吴国忱, 贾宗锋, 杨凌云. 反射波时频域地震波形反演方法[J]. 物探与化探, 2025, 49(5): 1155-1163.
[2] 王震, 计智锋, 张艺琼, 王雪柯, 蒋黎, 林雅平, 孔令洪, 张明军. 滨里海盆地东缘速度建模方法研究与应用[J]. 物探与化探, 2024, 48(3): 794-803.
[3] 郑浩, 崔月, 许璐, 齐鹏. 华南火成岩区深层地热勘探地震处理关键技术[J]. 物探与化探, 2024, 48(1): 88-97.
[4] 张敏, 邓盾, 李三福, 史文英, 张兴岩, 支玲. 东方1-1构造底辟模糊区OBN资料关键处理技术及应用[J]. 物探与化探, 2023, 47(6): 1456-1466.
[5] 陈子龙, 王海燕, 郭华, 王光文, 赵玉莲. 地震全波形反演研究进展与应用现状综述[J]. 物探与化探, 2023, 47(3): 628-637.
[6] 王莉利, 杜功鑫, 高新成, 王宁, 王维红. 基于U-Net网络的FWI地震低频恢复方法[J]. 物探与化探, 2023, 47(2): 391-400.
[7] 田坤, 王常波, 刘立彬, 张建中. 基于深度加权的三维地震斜率层析成像[J]. 物探与化探, 2022, 46(6): 1485-1491.
[8] 姚含, 徐海. 基于梯度投影法的全变差正则化全波形反演[J]. 物探与化探, 2022, 46(4): 977-981.
[9] 齐鹏. 深层膏盐体局部层析速度建模[J]. 物探与化探, 2022, 46(4): 982-987.
[10] 国运东. 基于组合震源编码的多尺度全波形反演方法[J]. 物探与化探, 2022, 46(3): 729-736.
[11] 徐蔚亚. 关于浮动基准面与起伏地表面的讨论[J]. 物探与化探, 2021, 45(1): 95-101.
[12] 郑浩, 蔡杰雄, 王静波. 基于构造导向滤波的高斯束层析速度建模方法及其应用[J]. 物探与化探, 2020, 44(2): 372-380.
[13] 彭海龙, 赫建伟, 任婷, 邓盾, 江凡, 王瑞敏, 张文祥. 基于地质构造约束的3D速度建模方法在琼东南盆地深水复杂断块区域成像中的应用[J]. 物探与化探, 2018, 42(3): 537-544.
[14] 薛花, 杜民, 文鹏飞, 张宝金, 张如伟. 网格层析速度反演方法在准三维西沙水合物中的应用[J]. 物探与化探, 2017, 41(5): 846-851.
[15] 张珺. 加蓬盐下复杂构造区井控高精度变速成图的方法研究[J]. 物探与化探, 2017, 41(3): 535-541.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com