Please wait a minute...
E-mail Alert Rss
 
物探与化探  2025, Vol. 49 Issue (2): 520-528    DOI: 10.11720/wtyht.2025.1146
  工程勘察 本期目录 | 过刊浏览 | 高级检索 |
微动探测技术在盾构隧道穿越城区岩溶地层中的应用
张中1,2,3,4(), 冯文成2,3,4, 林杨2,3,4
1.华南理工大学 土木与交通学院,广东 广州 510640
2.广州建筑股份有限公司,广东 广州 510640
3.广州市建筑集团有限公司,广东 广州 510640
4.广州市盾建建设有限公司,广东 广州 510640
Application of microtremor survey technology in shield tunnels passing through urban karst formations
ZHANG Zhong1,2,3,4(), FENG Wen-Cheng2,3,4, LIN Yang2,3,4
1. School of Civil Engineering & Transportation, South China University of Technology, Guangzhou 510640, China
2. Guangzhou Construction Co., Ltd., Guangzhou 510640, China
3. Guangzhou Municipal Construction Group Co., Ltd., Guangzhou 510640, China
4. Guangzhou Dunjian Construction Co., Ltd., Guangzhou 510640, China
全文: PDF(7289 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

隧道盾构施工穿越岩溶地层城市密集房屋群,由于建筑物密集,钻探勘查不足,存在因岩溶发育导致地面开裂、塌陷的重大风险。本文选择复杂环境下抗干扰能力强的微动探测技术来解决此类问题:通过微动反演视横波速度剖面对地下岩层波速结构特征进行分析,结合地质钻探资料推测基岩界面、强风化松散地层及溶洞异常区。研究结果表明该区域地层由浅至深视横波速度逐渐增大,波速在300 m/s以上的地层推断为灰岩地层,300 m/s以下为第四系,岩土分界面深度在10~15 m;解释了7处视横波速度低值异常区,波速在150~240 m/s,推测为松散地层或溶洞,深度在8~30 m。该方法抗干扰能力强、准确性高,准确划分了地下剖面横波速度结构、地层岩性界面、松散地层及溶洞异常,是解决岩溶发育城市密集建筑区地质勘探的有效手段。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张中
冯文成
林杨
关键词 微动探测岩溶发育密集建筑物溶洞异常    
Abstract

Due to dense buildings and structures and insufficient drilling surveys, the construction of shield tunnels passing through urban karst formations that host dense buildings faces significant risks of surface fracturing and subsidence caused by karst development. Hence, this study employed the microtremor survey technology with strong anti-interference capability in complex environments to address this challenge. Based on the technology, it analyzed the structural characteristics of wave velocities in underground rock formations through the inversion of the apparent shear-wave velocity profile. Combined with geological drilling data, it inferred the bedrock interface, highly weathered unconsolidated formations, and karst cave anomaly zones. Key findings are as follows: (1) The apparent shear-wave velocities in the study area gradually increased from the shallow to deep formations. Formations with wave velocities above and below 300 m/s were inferred to be limestone and Quaternary formations, respectively, with the rock-soil interface at depths approximately between 10~15 m; (2) Seven low-value anomaly zones of apparent shear-wave velocities ranging from 150~240 m/s were interpreted. They were presumed to be unconsolidated formations or karst caves at depths ranging from 8~30 m. Relying on strong anti-interference and high accuracy, the microtremor survey technology can accurately identify the shear-wave velocity structures of underground profiles, lithologic interfaces of formations, unconsolidated formations, and karst cave anomalies. Therefore, the technology is effective in the geological exploration of urban dense building areas with karst development.

Key wordsmicrotremor survey    karst development    dense buildings    karst cave anomaly
收稿日期: 2024-04-01      修回日期: 2024-05-15      出版日期: 2025-04-20
ZTFLH:  P631  
基金资助:广州市建筑集团有限公司科技计划资助项目(BH20220401510);广州市建筑集团有限公司科技计划资助项目(2022-KJ025);广州市建筑集团有限公司科技计划资助项目(BH20220401513);广州市建筑集团有限公司科技计划资助项目(2022-KJ037)
作者简介: 张中(1985-),男,地质工程博士后,高级工程师,主要从事隧道工程地质灾害预测研究工作。Email:11239558@qq.com
引用本文:   
张中, 冯文成, 林杨. 微动探测技术在盾构隧道穿越城区岩溶地层中的应用[J]. 物探与化探, 2025, 49(2): 520-528.
ZHANG Zhong, FENG Wen-Cheng, LIN Yang. Application of microtremor survey technology in shield tunnels passing through urban karst formations. Geophysical and Geochemical Exploration, 2025, 49(2): 520-528.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2025.1146      或      https://www.wutanyuhuatan.com/CN/Y2025/V49/I2/520
Fig.1  研究区构造地质及微动测线布置
地层岩性 反演横波速度vs/(m·s-1)
第四系覆盖层 100~240
强风化灰岩地层 150~300
中、微风化灰岩地层 >300
Table 1  研究区地层分层横波速度参数
Fig.2  典型测点频散曲线
Fig.3  Y1剖面地层视横波速度等值线
Fig.4  Y1剖面对应的地质剖面解释
异常圈定溶洞深度 对应钻孔编录 对比验证
1号异常区
圈定13.7~29.6 m为溶洞
钻孔MRNZ3-MH-166,编录12.7~15 m揭示为溶洞,15~16.1 m揭示为石灰岩,16.1~18.4 m揭示为溶洞,18.4~22.1 m揭示为石灰岩,22.1~24 m揭示为溶洞,24~26.1 m揭示为石灰岩,26.1~29.6 m揭示为溶洞 基本准确
1号异常区
圈定19.2~32.7 m为溶洞
钻孔MRNZ3-MH-169,编录19.2~30.3 m揭示为溶洞,30.3~30.9 m揭示为石灰岩,30.9~32.7 m揭示为溶洞 基本准确
1号异常区
圈定13.5~27 m为溶洞
钻孔MRNZ3-MH-170,编录13.5~22.8 m揭示为溶洞,22.8~23.9 m揭示为石灰岩,23.9~27 m揭示为溶洞 基本准确
1号异常区
圈定15~24.7 m为溶洞
钻孔MRNZ2-B18C,编录15~18.7 m揭示为溶洞,18.7~24.7 m揭示为石灰岩 基本准确
1号异常区
圈定19~23.5 m为溶洞
钻孔MRNZ3-MH-172编录,19~19.4 m揭示为石灰岩,19.4~23.3 m揭示为溶洞,23.3~23.5 m揭示为石灰岩 基本准确
2号异常区
圈定21.2~26.5 m为溶洞
钻孔MRNZ3-MH-175,编录21.2~23.4 m揭示为溶洞,23.4~25.2 m揭示为石灰岩,25.2~26.5 m揭示为溶洞 基本准确
2号异常区
圈定17.6~19.6 m为溶洞
钻孔MRNZ3-MH-176,编录17.6~17.8 m揭示为石灰岩,17.8~19.6 m揭示为溶洞 基本准确
3号异常区
圈定17.2~38.5 m为溶洞
钻孔MRNZ3-MH-184,编录17.2~29.5 m揭示为溶洞,29.5~30.7 m为石灰岩,30.7~34 m揭示为溶洞,34~36.8 m揭示为石灰岩,36.8~38.5 m揭示为溶洞 基本准确
Table 2  Y1剖面溶洞异常区与钻孔编录对比
Fig.5  Z1剖面地层视横波速度等值线
Fig.6  Z1剖面对应的地质剖面解释
微动异常圈定溶洞深度 钻孔编录 对比验证
1号异常区
圈定24.3~30.6 m为溶洞
钻孔MRNZ3-MH-174,编录24.3~27.3 m揭示为溶洞,27.3~28.6 m揭示为石灰岩,28.6~30.6 m揭示为溶洞 基本准确
1号异常区
圈定21.2~26.5 m为溶洞
钻孔MRNZ3-MH-175,编录21.2~23.4 m揭示为溶洞,23.4~25.2 m揭示为石灰岩,25.2~26.5 m揭示为溶洞 基本准确
2号异常区
圈定22~30.8 m为溶洞
钻孔MRNZ3-MH-183,编录22~30.8 m揭示为溶洞 准确
Table 3  Z1剖面异常区与钻孔编录对比
Fig.7  Y2剖面地层视横波速度等值线
Fig.8  Y2剖面对应的地质剖面解释
剖面 序号 异常里程/m 异常深度/m 钻探编录
Y1
剖面
1号异常 15~65 15~30 验证基本准确
2号异常 90~105 8~26 验证基本准确
3号异常 130~155 18~34 验证基本准确
Z1
剖面
4号异常 80~105 19~30 验证基本准确
5号异常 135~145 22~31 验证基本准确
Y2
剖面
6号异常 40~70 11~22 无验证
7号异常 115~135 13~21 无验证
Table 4  物探溶洞异常成果统计
[1] 张雯, 张磊, 朱尚明. 新型微动探测技术在砂卵石复合地层盾构隧道中的应用[J]. 兰州工业学院学报, 2023, 30(6):74-79.
[1] Zhang W, Zhang L, Zhu S M. Application of new micromotion detection technology in shield tunnel of sandy cobble composite stratum[J]. Journal of Lanzhou Institute of Technology, 2023, 30(6):74-79.
[2] 李安源, 谢绍彬, 龙秀洁, 等. 微动探测方法在城市深部探测中的应用——以广州南沙区三维深地探测项目为例[J]. 矿产与地质, 2023, 37(6):1264-1270.
[2] Li A Y, Xie S B, Long X J, et al. Application of micro motion detection method in urban deep exploration:An example of 3D deep exploration project in Nansha District of Guangzhou[J]. Mineral Resources and Geology, 2023, 37(6):1264-1270.
[3] 姚金, 徐佩芬, 凌甦群, 等. 地铁线路采空区微动剖面法探测研究——以广州地铁14号线二期为例[J]. 地球物理学报, 2023, 66(10):4279-4289.
[3] Yao J, Xu P F, Ling S Q, et al. Research on microtremor profile method to detection of goaf along subway line:A case study in the second phase of subway line 14[J]. Chinese Journal of Geophysics, 2023, 66(10):4279-4289.
[4] 邱振东, 郭长宝, 杨志华, 等. 基于微动探测的四川德达古滑坡空间结构特征与形成机理研究[J]. 地质力学学报, 2024, 3(31):1-17.
[4] Qiu Z D, Guo C B, Yang Z H, et al. Study on the spatial structural characteristics and formation mechanism of the Dedagu landslide in Sichuan Based on micro motion detection[J]. Journal of Geomechanics, 2024, 3(31):1-17.
[5] 李华, 王东辉, 张伟, 等. 地球物理方法在城市地质结构精细化探测中最优方法组合研究——以成都市天府新区为例[J]. 中国地质, 2023, 50(6):1691-1704.
[5] Li H, Wang D H, Zhang W, et al. The application effect of geophysical method in fine exploration of urban geological structure and study of optimal combination method:A case study of Tianfu New Area in Chengdu,Sichuan Province[J]. Geology in China, 2023, 50(6):1691-1704.
[6] 卓启亮, 于强. 微动探测方法在城市工程地质勘察中的应用[J]. 工程地球物理学报, 2020, 17(5):658-664.
[6] Zhuo Q L, Yu Q. The application of microtremor survey method in urban engineering geological investigation[J]. Chinese Journal of Engineering Geophysics, 2020, 17(5):658-664.
[7] 刘志清, 赵振国, 李添才, 等. 山区公路微动探测方法应用试验研究[J]. 地球物理学进展, 2023, 38(2):823-831.
[7] Liu Z Q, Zhao Z G, Li T C, et al. Research for the application of microtremor survey method to high-way construction in mountainous areas[J]. Progress in Geophysics, 2023, 38(2):823-831.
[8] 林朝旭. 地铁盾构区间孤石与基岩凸起等不良地质体探测新方法[J]. 工程地球物理学报, 2018, 15(4):432-439.
[8] Lin C X. A new method to detect adverse geological such as bodies and boulder bedrock bulge etc in urban metro shield construction[J]. Chinese Journal of Engineering Geophysics, 2018, 15(4):432-439.
[9] 李应战, 计鹏, 张德强, 等. 综合物探技术在城市轨道交通不良地质体探测中的应用分析[J]. 工程地球物理学报, 2023, 20(4):471-479.
[9] Li Y Z, Ji P, Zhang D Q, et al. Application analysis of comprehensive investigation technology in the detection of unfavorable geological bodies in urban railway engineering[J]. Chinese Journal of Engineering Geophysics, 2023, 20(4):471-479.
[10] 蔡祖华, 刘宏岳, 郑金伙, 等. 微动技术在城市地下病害体探测中的应用研究[J]. 工程地球物理学报, 2021, 18(6):893-902.
[10] Cai Z H, Liu H Y, Zheng J H, et al. Research and application of micromotion technology in the detection of urban underground disease body[J]. Chinese Journal of Engineering Geophysics, 2021, 18(6):893-902.
[11] 杜亚楠, 徐佩芬, 凌甦群. 土石混合滑坡体微动探测:以衡阳拜殿乡滑坡体为例[J]. 地球物理学报, 2018, 61(4):1596-1604.
doi: 10.6038/cjg2018L0057
[11] Du Y N, Xu P F, Ling S Q. Microtremor survey of soil-rock mixture landslides:An example of Baidian township,Hengyang City[J]. Chinese Journal of Geophysics, 2018, 61(4):1596-1604.
[12] 田宝卿, 丁志峰. 微动探测方法研究进展与展望[J]. 地球物理学进展, 2021, 36(3):1306-1316.
[12] Tian B Q, Ding Z F. Review and prospect prediction for microtremor survey method[J]. Progress in Geophysics, 2021, 36(3):1306-1316.
[1] 张继伟, 谭慧. 可控源音频大地电磁和微动资料的拟二维联合反演[J]. 物探与化探, 2024, 48(4): 1094-1102.
[2] 王军成, 赵振国, 高士银, 罗传根, 李琳, 徐明钻, 李勇, 袁国境. 综合物探方法在滨海县月亮湾地热资源勘查中的应用[J]. 物探与化探, 2023, 47(2): 321-330.
[3] 李巧灵, 张辉, 雷晓东, 李晨, 房浩, 关伟, 韩宇达, 赵旭辰. 综合利用多道瞬态面波和微动探测分析斜坡内部结构[J]. 物探与化探, 2022, 46(1): 258-267.
[4] 刘伟, 黄韬, 王庭勇, 刘怡, 张继, 刘文涛, 张琦斌, 李强. 综合物探方法在城市隐伏断裂探测中的应用[J]. 物探与化探, 2021, 45(4): 1077-1087.
[5] 李谭伟, 李振兴, 葛延明, 邬远明. 综合物探方法在株洲湘江大桥勘察中的应用[J]. 物探与化探, 2021, 45(3): 785-792.
[6] 章惠, 隋少强, 钱烙然, 汪新伟. 多种非震方法在山东齐河地热勘查中的应用[J]. 物探与化探, 2020, 44(4): 727-733.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com