Please wait a minute...
E-mail Alert Rss
 
物探与化探  2025, Vol. 49 Issue (1): 73-81    DOI: 10.11720/wtyht.2025.1126
  方法研究信息处理仪器研制 本期目录 | 过刊浏览 | 高级检索 |
基于Res-UNet网络的井地电阻率法反演
周楠1(), 王智1(), 方思南2, 张宇哲1
1.长江大学 电子信息与电气工程学院,湖北 荆州 434023
2.长江大学 地球物理与石油资源学院,湖北 武汉 430100
A Res-UNet network-based method for borehole-to-surface electrical resistivity inversion
ZHOU Nan1(), WANG Zhi1(), FANG Si-Nan2, ZHANG Yu-Zhe1
1. School of Electronic Information and Electrical Engineering, Yangtze University, Jingzhou 434023, China
2. College of Geophysics and Petroleum Resources, Yangtze University, Wuhan 430100, China
全文: PDF(4671 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

为了解决传统电阻率反演方法依赖反演初始模型的选择、反演过程容易陷入局部极小且反演耗时较长的缺点,本文提出了一种基于Res-UNet神经网络的井地电阻率实时反演方法,通过Gmsh软件获得大幅扩展的正演响应数据集,并针对数据特性选取合适的网络参数进行反演实验。实验结果表明,Res-UNet算法能充分挖掘数据特性,快速获得符合地层电性特征的电阻率成像结果,在电阻率正演数据集上的预测值和正演响应的均方误差为0.019 44,在测试集上的均方根误差为0.075 8,与传统反演方法相比,成像结果有显著提升。基于Res-UNet网络的井地电阻率反演方法在仿真模型的反演计算中得到了较好的结果,能快速、准确地反演出地下异常体的位置和形态,且具有较好的抗噪声能力,为电阻率数据和真实地电结构之间的映射关系提供了一种新的方法和思路。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周楠
王智
方思南
张宇哲
关键词 Res-UNetGmsh残差块批量建模井地电阻率反演    
Abstract

Traditional resistivity inversion methods tend to rely on the initial inversion model selected, get stuck in local minima, and be time-consuming. To address these issues, this study proposed a real-time resistivity inversion method based on the Res-UNet neural network. First, a significantly expanded forward response dataset was generated using the Gmsh software. Then, inversion experiments were carried out based on appropriate network parameters determined according to data characteristics. The experimental results indicate that the Res-UNet algorithm can fully dig the data characteristics and rapidly produce resistivity images that align with the electrical properties of strata. The experiments on the dataset for resistivity forward modeling yielded a mean squared error between the predicted values and the forward responses of 0.019 44, and those on the test set yielded a mean squared error of 0.075 8, suggesting improved imaging results compared to traditional inversion methods. Furthermore, the proposed method achieved encouraging results in the inversion calculations of simulation models, enabling rapid and accurate inversion of the location and morphologies of subsurface anomalies while exhibiting a strong noise resistance. This study provides a new method and philosophy for mapping the relationship between resistivity data and the actual geoelectric structures.

Key wordsRes-UNet    Gmsh    residual block    batch modeling    borehole-to-surface resistivity method inversion
收稿日期: 2024-04-01      修回日期: 2024-10-31      出版日期: 2025-02-20
ZTFLH:  P631  
基金资助:国家自然科学基金(41604093);国家自然科学基金青年项目(42204127)
通讯作者: 王智(1985-),男,博士,副教授,主要研究方向为电磁法数值模拟和图像处理工作。Email:1324385898@qq.com
作者简介: 周楠(1997-),男,硕士研究生,主要从事电磁法数值研究工作。Email:18140649212@163.com
引用本文:   
周楠, 王智, 方思南, 张宇哲. 基于Res-UNet网络的井地电阻率法反演[J]. 物探与化探, 2025, 49(1): 73-81.
ZHOU Nan, WANG Zhi, FANG Si-Nan, ZHANG Yu-Zhe. A Res-UNet network-based method for borehole-to-surface electrical resistivity inversion. Geophysical and Geochemical Exploration, 2025, 49(1): 73-81.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2025.1126      或      https://www.wutanyuhuatan.com/CN/Y2025/V49/I1/73
Fig.1  残差块结构
Fig.2  Res-UNet网络结构
Conv1 Res1 Conv2 Res2 Conv3 Res3
1 Conv(1,4) Res(4,4) Conv(4,16) Res(16,16) Conv(16,32) Res(32,32)
2 Conv(1,16) Res(16,16) Conv(16,32) Res(32,32) Conv(32,64) Res(64,64)
3 Conv(1,32) Res(32,32) Conv(32,64) Res(64,64) Conv(64,128) Res(128,128)
4 Conv(1,64) Res(64,64) Conv(64,128) Res(128,128) Conv(128,256) Res(256,256)
Table 1  编码器部分不同通道数
Fig.3  对比不同通道数的MSE
Fig.4  正方形异常体井地二级装置模型示意
Fig.5  基于Gmsh的随机批量建模流程框架
异常体类型 异常体
尺寸/m
样本数
量/个
异常体电率/
(Ω·m)
围岩电阻率/
(Ω·m)
正方形异常体 12×12 1 000 10~100
300~1 000
200
长方形异常体 16×8 1 000
阶梯型异常体 3层9×3 1 000
正方形 12×12 1 500
阶梯型 3层9×3
层状 100×20 1 500
阶梯型 3层9×3
Table 2  异常体模型参数
Fig.6  Res-UNet网络反演流程
Fig.7  Res-UNet损失曲线
异常体大小 异常体中心
节点坐标
异常体电阻
率/(Ω·m)
背景电阻率/
(Ω·m)
模型一 正方形12 m×12 m (39,-29) ρ=500 200
模型二 长方形16 m×8 m (42,-42) ρ=100
模型三 正方形12 m×12 m
阶梯形3层9 m×3 m
(20,-30)
(80,-50)
ρ1=100
ρ2=1 000
模型四 层状100 m×20 m
阶梯形3层9 m×3 m
(50,-70)
(43,-39)
ρ1=500
ρ2=1 000
Table 3  异常体模型参数
Fig.8  反演结果对比
Fig.9  Res-UNet预测值和真视电阻率值对比
Fig.10  添加高斯白噪声后的反演结果
[1] 蔡军涛, 阮百尧, 赵国泽, 等. 复电阻率法二维有限元数值模拟[J]. 地球物理学报, 2007, 50(6):1869-1876.
[1] Cai J T, Ruan B Y, Zhao G Z, et al. Two-dimensional modeling of complex resistivity using finite element method[J]. Chinese Journal of Geophysics, 2007, 50(6):1869-1876.
[2] 苏洲, 胡文宝. 二维大地电磁正演中的无网格算法[J]. 物探与化探, 2012, 36(6):1024-1028,1039.
[2] Su Z, Hu W B. Meshless algorithm in two-dimensional electromagnetic forward calculation[J]. Geophysical and Geochemical Exploration, 2012, 36(6):1024-1028,1039.
[3] 王智, 方思南, 姜匡义, 等. 基于非结构化网格的井地电阻率法三维正演模拟及异常特征研究[J]. 地球物理学进展, 2022, 37(4):1620-1630.
[3] Wang Z, Fang S N, Jiang K Y, et al. Research on 3D hole-to-surface resistivity forward modeling and anomaly based on unstructured meshes[J]. Progress in Geophysics, 2022, 37(4):1620-1630.
[4] 任政勇, 汤井田. 基于局部加密非结构化网格的三维电阻率法有限元数值模拟[J]. 地球物理学报, 2009, 52(10):2627-2634.
[4] Ren Z Y, Tang J T. Finite element modeling of 3-D DC resistivity using locally refined unstructured meshes[J]. Chinese Journal of Geophysics, 2009, 52(10):2627-2634.
[5] Tang J T, Wang F Y, Ren Z Y. 2.5D DC resistivity modeling by adaptive finite-element with unstructured triangulation[J]. Chinese Journal of Geophysics, 2010, 53(3):708-716.
[6] 张宇哲, 孟麟, 王智. 基于Gmsh的起伏地形下井—地直流电法正演模拟[J]. 物探与化探, 2022, 46(1):182-190.
[6] Zhang Y Z, Meng L, Wang Z. Forward modeling of well-ground direct current resistivity method for undulating terrain based on Gmsh[J]. Geophysical and Geochemical Exploration, 2022, 46(1):182-190.
[7] Constable S C, Parker R L, Constable C G. Occam’s inversion:A practical algorithm for generating smooth models from electromagnetic sounding data[J]. Geophysics, 1987, 52(3):289-300.
[8] Smith J T, Booker J R. Rapid inversion of two- and three-dimensional magnetotelluric data[J]. Chinese Journal of Geophysical Research:Solid Earth, 1991, 96(B3):3905-3922.
[9] Chen X B, Zhao G Z, Tang J, et al. The adaptive regularized inversion algorithm(ARIA) for magnetotelluric data[J]. Chinese Journal of Geophysics, 2005, 48(4):1005-1016.
[10] 黄俊革, 阮百尧. 直流电阻率测深中二维与三维反演结果的对比与分析[J]. 物探与化探, 2004, 28(5):447-450.
[10] Huang J G, Ruan B Y. An analytical comparison between 2d and 3d inversions in dc resistivity sounding[J]. Geophysical and Geochemical Exploration, 2004, 28(5):447-450.
[11] 刘斌, 李术才, 李树忱, 等. 基于不等式约束的最小二乘法三维电阻率反演及其算法优化[J]. 地球物理学报, 2012, 55(1):260-268.
[11] Liu B, Li S C, Li S C, et al. 3D electrical resistivity inversion with least-squares method based on equality constraint and its computation efficiency optimization[J]. Chinese Journal of Geophysics, 2012, 55(1):260-268.
[12] 王智, 潘和平, 骆玉虎, 等. 基于不等式约束的井地电阻率法三维非线性共轭梯度反演研究[J]. 地球物理学进展, 2016, 31(1):360-370.
[12] Wang Z, Pan H P, Luo Y H, et al. 3-D hole-to-surface resistivity inversion with nonlinear conjugate gradients method under the constraint of inequality[J]. Progress in Geophysics, 2016, 31(1):360-370.
[13] 刘征宇, 庞永昊, 张凤凯, 等. 基于多尺度边缘特征的深度学习电阻率反演方法[J]. 岩土力学, 2023, 44(11):3299-3306.
[13] Liu Z Y, Pang Y H, Zhang F K, et al. Deep learning resistivity inversion method based on multi-scale edge features[J]. Rock and Soil Mechanics, 2023, 44(11):3299-3306.
[14] 安鹏, 曹丹平. 基于深度学习的测井岩性识别方法研究与应用[J]. 地球物理学进展, 2018, 33(3):1029-1034.
[14] An P, Cao D P. Research and application of logging lithology identification based on deep learning[J]. Progress in Geophysics, 2018, 33(3):1029-1034.
[15] 夏文鹤, 朱喆昊, 韩玉娇, 等. 电阻率测井成像图井壁裂缝智能识别与分割方法[J]. 石油地球物理勘探, 2023, 58(5):1042-1052.
[15] Xia W H, Zhu Z H, Han Y J, et al. Intelligent identification and segmentation method of wellbore fractures in resistivity logging imaging map[J]. Oil Geophysical Prospecting, 2023, 58(5):1042-1052.
[16] Anomohanran O, Orhiunu M E. Assessment of groundwater occurrence in Olomoro,Nigeria using borehole logging and electrical resistivity methods[J]. Arabian Journal of Geosciences, 2018, 11(9):1-9.
[17] Park G, Park S, Kim J H. Estimating the existence probability of cavities using integrated geophysics and a neural network approach[J]. Computers and Geosciences, 2010, 36(9):1161-1167.
[18] 张凌云, 刘鸿福. ABP法在高密度电阻率法反演中的应用[J]. 地球物理学报, 2011, 54(1):227-233.
[18] Zhang L Y, Liu H F. The application of ABP method in high-density resistivity method inversion[J]. Chinese Journal of Geophysics, 2011, 54(1):227-233.
[19] 高明亮, 于生宝, 郑建波, 等. 基于 IGA 算法的电阻率神经网络反演成像研究[J]. 地球物理学报, 2016, 59(11):4372-4382.
doi: 10.6038/cjg20161136
[19] Gao M L, Yu S B, Zheng J B, et al. Research of resistivity imaging using neural network based on immune genetic algorithm[J]. Chinese Journal of Geophysics, 2016, 59(11):4372-4382.
[20] Phueakim K, Amatyakul P, Vachiratienchai C. An attempt to use convolutional neural network to recover layered-earth structure from electrical resistivity tomography survey[J]. Journal of Physics:Conference Series. IOP Publishing, 2023, 2653(1):012044.
[21] He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition[C]// Las Vegas:2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).NV,USA.IEEE,2016:770-778.
[22] Ronneberger O, Fischer P, Brox T. U-net:Convolutional networks for biomedical image segmentation[M]// Lecture Notes in Computer science. Cham: Springer International Publishing,2015:234-241.
[23] Srivastava N, Hinton G, Krizhevsky A, et al. Dropout:A simple way to prevent neural networks from overfitting.[J]. Journal of Machine Learning Research, 2014, 15(1):1929-1958.
[24] He K M, Zhang X Y, Ren S Q, et al. Delving deep into rectifiers:Surpassing human-level performance on imagenet classification[C]// Santiago:2015 IEEE International Conference on Computer Vision(ICCV).Chile.IEEE,2015:1026-1034.
[1] 张宇哲, 孟麟, 王智. 基于Gmsh的起伏地形下井—地直流电法正演模拟[J]. 物探与化探, 2022, 46(1): 182-190.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com