Please wait a minute...
E-mail Alert Rss
 
物探与化探  2023, Vol. 47 Issue (3): 707-717    DOI: 10.11720/wtyht.2023.1244
  地质调查·资源勘查 本期目录 | 过刊浏览 | 高级检索 |
文山小河尾水库岩溶含水渗漏通道的地球物理新证据
周建兵1(), 罗锐恒1(), 贺昌坤1, 潘晓东2,3,4, 张绍敏1, 彭聪2,3,4
1.文山壮族苗族自治州水利电力勘察设计院,云南 文山 663000
2.中国地质科学院 岩溶地质研究所,广西 桂林 541004
3.自然资源部 岩溶动力学重点实验室,广西 桂林 541004
4.联合国教科文组织国际岩溶研究中心,广西 桂林 541004
New geophysical evidence for karst water-bearing seepage pathways in the Xiaohewei reservoir,Wenshan City
ZHOU Jian-Bing1(), LUO Rui-Heng1(), HE Chang-Kun1, PAN Xiao-Dong2,3,4, ZHANG Shao-Min1, PENG Cong2,3,4
1. Institute of Wenshan Hydraulic and Electric Power Survey,Wenshan 663000,China
2. Institute of Karst Geolog of Chinese Academy of Geological Survey,Guilin 541004,China
3. Karst Dynamics Laboratory of Ministry of Natural Resources,Guilin 541004,China
4. International Research Center on Karst under the Auspieces of UNESCO,Guilin 541004,China
全文: PDF(7271 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

小河尾水库作为文山市境内海拔最高的岩溶水库,自建成蓄水以来,存在严重的库水渗漏问题,虽经多次防渗处理,但水库渗漏的情况仍未改善。为确定小河尾水库地下岩溶渗漏通道的位置,以指导后期水库防渗工程的部署,本次研究在工程区内利用高密度电法与音频大地电磁法探测水库地下渗漏通道,通过对物探测试数据进行2D反演试算,发现将这2种方法相结合具有可行性,2种方法物探异常点位置高度吻合,能精确反映地下不同深度的地质情况,探测结果能为后期设计和施工提供参考依据。基于实测数据反演结果,并结合地表地质资料、钻探验证手段,推测水库主要存在2条NNE向且高程集中于1 800 m以上的岩溶含水渗漏通道,其中I号岩溶渗漏通道位于灰岩与硅质岩接触带附近,II号岩溶渗漏通道位于灰岩内部岩溶裂隙处。同时基于本次物理勘探结果,笔者也为小河尾水库后期防渗处理提出了帷幕灌浆工程部署建议。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周建兵
罗锐恒
贺昌坤
潘晓东
张绍敏
彭聪
关键词 物理勘探岩溶水库渗漏通道音频大地电磁法高密度电法    
Abstract

As a karst reservoir with the highest altitude in Wenshan City,the Xiaohewei reservoir has been suffering from severe water seepage since its completion.Despite several seepage control treatments,the seepage of the reservoir is still not effectively controlled.To determine the locations of underground karst seepage pathways of the reservoir and guide the later seepage control project,this study detected the seepage pathways in the project area combining the high-density resistivity method and the audio magnetotelluric method.The 2D inversion trial calculation of geophysical testing data indicates the feasibility of combining the two methods.The methods show highly consistent geophysical anomaly positions and can accurately reflect the geological conditions at different burial depths.Thus,their detection results can be referenced for later design and construction.Based on the inversion of measured data,the surface geological data,and the drilling verification means,it is speculated that the reservoir mainly has two NNE-directed karst water-bearing seepage pathways with an elevation of more than 1 800 m.These two karst seepage pathways (No.1 and No.2) are located near the contact zone between limestones and siliceous rocks,and in the karst fissures inside limestones,respectively.Based on the geophysical exploration results,this study also puts forward some suggestions on the deployment of the curtain grouting project for later seepage control of the Xiaohewei reservoir.

Key wordsgeophysical exploration    karst reservoir    seepage pathway    audio magnetotelluric method    high-density resistivity method
收稿日期: 2022-05-20      修回日期: 2023-02-06      出版日期: 2023-06-20
ZTFLH:  P631.4  
基金资助:国家自然科学基金项目(41702278);中国地质调查局地质调查项目(DD20190326);社会服务项目“云南省小河尾水库岩溶渗漏水文地质勘察”(YRSF-2020-505)
通讯作者: 罗锐恒(1970-),男,高级工程师,本科,主要从事水文地质工程地质研究工作。Email:sdylrh@126.com
作者简介: 周建兵(1988-),男,工程师,本科,主要从事水文地质工程地质研究工作。Email:419044071@qq.com
引用本文:   
周建兵, 罗锐恒, 贺昌坤, 潘晓东, 张绍敏, 彭聪. 文山小河尾水库岩溶含水渗漏通道的地球物理新证据[J]. 物探与化探, 2023, 47(3): 707-717.
ZHOU Jian-Bing, LUO Rui-Heng, HE Chang-Kun, PAN Xiao-Dong, ZHANG Shao-Min, PENG Cong. New geophysical evidence for karst water-bearing seepage pathways in the Xiaohewei reservoir,Wenshan City. Geophysical and Geochemical Exploration, 2023, 47(3): 707-717.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2023.1244      或      https://www.wutanyuhuatan.com/CN/Y2023/V47/I3/707
Fig.1  研究区水文地质简图
介质类型 相对介电常数εr 电阻率/(Ω·m)
淡水 81 10~100
湿黏土 15~40 10~200
砂页岩 5~15 10~1000
裂隙灰岩 7~10 500~5000
完整灰岩 4~8 >5000
硅质岩 3.5~10 500~20000
Table 1  研究区岩土介质电性参数
Fig.2  工作区地质概况及物探工作布置
Fig.3  高密度电法反演电阻率断面
Fig.4  第4测线AMT二维反演电阻率等值断面(a)和地质推断解释剖面(b)
Fig.5  第5测线AMT二维反演电阻率等值断面(a)和地质推断解释剖面(b)
Fig.6  第6测线AMT二维反演电阻率等值断面(a)和地质推断解释剖面(b)
Fig.7  小河尾水库ZK1(a)、ZK2(b)钻孔岩性柱状图
[1] 唐杰. 查日扣水电站坝址区岩溶发育特征及渗漏研究[D]. 成都: 成都理工大学, 2014.
[1] Tang J. Research on karst development characteristics and seepage in the dam site area of Charikou Hydropower Station[D]. Chengdu: Chengdu University of Technology, 2014.
[2] 陈贻祥, 邬健强, 黄奇波, 等. 水中自然电场法探测病态水库岩溶渗漏通道——以金鸡河水库一级水电站为例[J]. 中国岩溶, 2018, 37(6):883-891.
[2] Chen Y X, Wu J Q, Huang Q B, et al. Detection of karst leakage passages in sick reservoirs by the self-potential method on the water:An example of the first-class hydropower station on the Jinjihe reservoir[J]. Carsologica Sinica, 2018, 37(6):883-891.
[3] 卢耀如. 岩溶地区主要水利工程地质问题与水库类型及其防渗处理途径[J]. 水文地质工程地质, 1982, 9(4):15-22.
[3] Lu Y R. Main water conservancy engineering geological problems and the reservoir type in kar-st region and anti-seepage treatment way[J]. Hydrogeology & Engineering Geology, 1982, 9(4):15-22.
[4] 韩凯, 陈玉玲, 陈贻祥, 等. 岩溶病害水库的渗漏通道探测方法——以广西全州县洛潭水库为例[J]. 水力发电学报, 2015, 34(11):116-125.
[4] Han K, Chen Y L, Chen Y X, et al. Detection method of leakage passages in karst disease reservoirs:A case study of Luotan reservoir in Quanzhou county of Guangxi[J]. Journal of Hydroelectric Engineering, 2015, 34(11):116-125.
[5] 赵瑞, 许模. 水库岩溶渗漏及防渗研究综述[J]. 地下水, 2011, 33(2):20-22.
[5] Zhao R, Xu M. Summary on reservoir karst seepage and anti-seepage research[J]. Ground Water, 2011, 33(2):20-22.
[6] 彭仕雄, 陈卫东, 肖强. 官地电站库首左岸河湾地块岩溶渗漏分析[J]. 岩石力学与工程学报, 2015, 34(S2):4030-4037.
[6] Peng S X, Chen W D, Xiao Q. Karst seepage analysis on left river bend in the held area of Guandi hydropower station reservoir[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(S2):4030-4037.
[7] 白云, 袁宝远, 潘玮璠. 南门峡水库渗漏路径地质雷达探测分析[J]. 广西大学学报:自然科学版, 2015, 40(6):1359-1364.
[7] Bai Y, Yuan B Y, Pan W F. Detection and analysis of seepage path of Nanmenxia reservoir using ground penetrating radar[J]. Journal of Guangxi University:Natural Science Edition, 2015, 40(6):1359-1364.
[8] 陈建生, 李平, 王涛, 等. 青藏高原东缘水库绕坝基渗流化学溶蚀研究[J]. 岩土工程学报, 2019, 41(4):610-616.
[8] Chen J S, Li P, Wang T, et al. Study on seepage and chemical dissolution of reservoirs around the dam foundation on the eastern margin of the Qinghai-Tibet Plateau[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4):610-616.
[9] 罗保才, 孙刚, 王世锋. 盘石头水库右岸山体渗漏问题分析与处理[J]. 人民黄河, 2019, 41(3):127-130.
[9] Luo B C, Sun G, Wang S F. Analysis and treatment of mountain seepage problems on the right bank of Panshitou Reservoir[J]. People's Yellow River, 2019, 41(3):127-130.
[10] Park M K, Park S, Yi M J, et al. Application of electrical resistivity tomography (ERT) technique to detect underground cavities in a karst area of South Korea[J]. Environmental Earth Sciences, 2014, 71(6):2797-2806.
doi: 10.1007/s12665-013-2658-7
[11] 王志鹏, 刘江平, 李小彬. 高密度电法对不同溶洞探测效果模拟[J]. 科学技术与工程, 2019, 19(27):74-80.
[11] Wang Z P, Liu J P, Li X B. Simulation study on detection effect of different karst caves by high density resistivity method[J]. Science Technology and Engineering, 2019, 19(27):74-80.
[12] 雷旭友, 李正文, 折京平. 超高密度电阻率法在土洞、煤窑采空区和岩溶勘探中应用研究[J]. 地球物理学进展, 2009, 24(1):340-347.
[12] Lei X Y, Li Z W, Zhe J P. Applications and research of the high resolution vesistivity method in caves,mined vegion and explovation of Karst region[J]. Progress in Geophysics, 2009, 24(1):340-347.
[13] Nouioua A, Rouabhia C, Fehdi M L, et al. The application of GPR and electrical resistivity tomography as useful tools in detection of sinkholes in the Cheria Basin (northeast of Algeria)[J]. Environmental Earth Sciences, 2013, 68(6):1661-1672.
doi: 10.1007/s12665-012-1859-9
[14] 刘东坤, 魏昶帆, 吴勇, 等. 地质雷达法在桩底岩溶探测中的频谱差异分析[J]. 地下空间与工程学报, 2020, 16(s2):971-975.
[14] Liu D K, Wei C F, Wu Y, et al. Analysis on the spectrum difference of electromagnetic method for the bottom of the pile in Karst detection project[J]. Chinese Journal of Underground Space and Engineering, 2020, 16(s2):971-975.
[15] 唐宇豪, 魏栋华, 索朗, 等. 地震映像法和地质雷达法在铁路隧底岩溶探测中的应用[J]. 工程地球物理学报, 2021, 18(5):665-670.
[15] Tang Y H, Wei D H, Suo L, et al. Application of seismic imaging method and ground penetrating radarmethod in karst detection at the bottom of railroad tunnels[J]. Chinese Journal of Engineering Geophysics, 2021, 18(5):665-670.
[16] Xue G Q, Cheng J L, Zhou N N, et al. Detection and monitoring of water-filled voids using transient electromagnetic method:A case study in Shanxi,China[J]. Environmental Earth Sciences, 2013, 70(5):2263-2270.
doi: 10.1007/s12665-013-2375-2
[17] Thomas B, Roth M J S. Evaluation of site characterization methods for sinkholes in Pennsylvania and New Jersey[J]. Engineering Geology, 1999, 52(1):147-152.
doi: 10.1016/S0013-7952(98)00068-4
[18] 陈玉玲, 韩凯, 陈贻祥, 等. 可控源音频大地电磁法在岩溶塌陷勘察中的应用[J]. 地球物理学进展, 2015, 30(6):2616-2622.
[18] Chen Y L, Han K, Chen Y X, et al. The application of CSAMT in karst collapse investigation[J]. Progress in Geophysics, 2015, 30(6):2616-2622.
[19] 张虎生, 张为孙. 物探方法在地质灾害中的应用[J]. 中国地质灾害与防治学报, 2003, 14(3):124-127,132.
[19] Zhang H S, Zhang W S. Application of geophysical exploration method for geological hazard[J]. The Chinese Journal of Geological Hazard and Control, 2003, 14(3):124-127,132.
[20] 郑智杰, 甘伏平, 曾洁. 不同深度岩溶管道的高密度电阻率法反演特征[J]. 中国岩溶, 2015, 34(3):292-297.
[20] Zheng Z J, Gan F P, Zeng J. Inversiom characteristics of high-density resistivity method on karst conduits at varied depths[J]. Carsologica Sinica, 2015, 34(3):292-297.
[21] 王金海, 才智杰, 苏文俊, 等. 高密度电法在毗卢洞石窟地质病害勘察中的应用[J]. 长江科学院院报, 2015, 32(10):17-22.
[21] Wang J H, Cai Z J, Su W J, et al. Application of high-density electrical methods to the survey of geo-hazards in Pilu Cave[J]. Journal of Yangtze River Scientific Research Institute, 2015, 32(10):17-22.
[22] 杨天春, 许德根, 张启, 等. 高密度电法在隐伏溶洞勘探中的应用[J]. 中国地质灾害与防治学报, 2016, 27(2):145-148.
[22] Yang T C, Xu D G, Zhang Q, et al. Application of high density resistivity method in eng-ineering karst exploration[J]. The Chinese Journal of Geological Hazard and Control, 2016, 27(2):145-148.
[23] 董泽义, 汤吉, 周志明. 可控源音频大地电磁法在隐伏活动断裂探测中的应用[J]. 地震地质, 2010, 32(3):442-452.
[23] Dong Z Y, Tang J, Zhou Z M. Application of CSAMT to buried active faults investigation[J]. Seismology and Geology, 2010, 32(3):442-452.
[24] 甘伏平, 吕勇, 喻立平, 等. 氡气测量与CSAMT联合探测地下地质构造——以滇西潞西地区帕连、法帕剖面探测为例[J]. 地质通报, 2012, 31(s1):389-395.
[24] Gan F P, Lyu Y, Yu L P, et al. The utilization of combined radon and CSAMT methods to detect underground geological structures:A case study of detection in Palian and Fapa profiles,Luxi area,western Yunnan Province[J]. Geological Bulletinof China, 2012, 31(s1):389-395.
[25] 陈旭乐. 音频大地电磁测深法和高密度电阻率法对隧道岩溶的识别研究与应用[D]. 成都: 成都理工大学, 2017.
[25] Chen X Y. Recognition research and application of audio-frequency magnetotellurics and high density resistivity method for tunnel Karst[D]. Chengdu: Chengdu University of Technology, 2017.
[26] 叶益信, 杜家明, 薛海军, 等. 高密度电法与音频大地电磁法在城市输水隧洞勘察中的应用[J]. 地球科学与环境学报, 2020, 42(6):767-775.
[26] Ye Y X, Du J M, Xue H J, et al. Application of multi-electrode resistivity method and audio-frequency magnetotelluric method in the investigation of urban water tunnel[J]. Journal of Earth Sciences and Enviroment, 2020, 42(6):767-775.
[27] 陈松, 庞凯旋, 陈长敬, 等. 基于音频大地电磁测深和高密度电法的城市隐伏断裂联合探测[J]. 工程地球物理学报, 2020, 17(4):470-477.
[27] Chen S, Pang K X, Chen C J, et al. Joint detection of urban buried faults with audio magnetotelluric sounding and high density resistivity method[J]. Chinese Journal of Engineering Geophysics, 2020, 17(4):470-477.
[28] 欧阳涛, 底青云, 安志国, 等. CSAMT法在某铁路隧道勘察中的应用研究[J]. 地球物理学进展, 2016, 31(3):1351-1357.
[28] Ouyang T, Di Q Y, An Z G, et al. Application of CSAMT method in railway tunnel investigation[J]. Progress in Geophysics, 2016, 31(3):1351-1357.
[29] 陈松, 余绍文, 刘怀庆, 等. 高密度电法在水文地质调查中的应用研究——以江平圩幅为例[J]. 地球物理学进展, 2017, 32(2):849-855.
[29] Chen S, Yu S W, Liu H Q, et al. Application and research of high density resistivity method in hydrogeological prospecting:A case study on Jiangping town map[J]. Progress in Geophysics, 2017, 32(2):849-855.
[30] 李帝铨, 底青云, 王光杰, 等. CSAMT探测断层在北京新区规划中的应用[J]. 地球物理学进展, 2008, 23(6):1963-1969.
[30] Li D Q, Di Q Y, Wang G J, et al. The application of CSAMT fault detection in the planning of Beijing New Area[J]. Progress in Geophysics, 2008, 23(6):1963-1969.
[31] 穆海杰, 王红兵. CSAMT法在南水北调中线采空区探测中的应用[J]. 工程地球物理学报, 2008, 5(3):321-325.
[31] Mu H J, Wang H B. The application of CSAMT Method in goaf detection in the middle route of South-to-North Water Transfer[J]. Journal of Engineering Geophysics, 2008, 5(3):321-325.
[1] 张昭, 殷全增, 张龙飞, 张大明, 张世晖, 黄国疏, 赵石峰, 杨彪, 台立勋, 张灯亮, 王进朝, 段刚. 综合物探技术在深部碳酸盐岩热储探测中的应用研究——以雄安新区为例[J]. 物探与化探, 2023, 47(4): 926-935.
[2] 杨天春, 胡峰铭, 于熙, 付国红, 李俊, 杨追. 天然电场选频法的响应特性分析与应用[J]. 物探与化探, 2023, 47(4): 1010-1017.
[3] 覃剑文, 姜晓腾, 谢贵城, 孙汉武, 何流, 孙怀凤. 基于高密度电法的城市复杂环境岩溶探查研究——以贵港市北环新村为例[J]. 物探与化探, 2023, 47(2): 530-539.
[4] 王军成, 赵振国, 高士银, 罗传根, 李琳, 徐明钻, 李勇, 袁国境. 综合物探方法在滨海县月亮湾地热资源勘查中的应用[J]. 物探与化探, 2023, 47(2): 321-330.
[5] 何帅, 杨炳南, 阮帅, 李永刚, 韩姚飞, 朱大伟. 三维AMT正反演技术对贵州马坪含金刚石岩体探测的精细解释[J]. 物探与化探, 2022, 46(3): 618-627.
[6] 王强, 田野, 刘欢, 朱春光, 白超琨, 郝森. 综合物探方法在煤矿采空区探测中的应用[J]. 物探与化探, 2022, 46(2): 531-536.
[7] 张化鹏, 钱卫, 刘瑾, 武立林, 宋泽卓. 基于伪随机信号的磁电法渗漏模型试验[J]. 物探与化探, 2022, 46(1): 198-205.
[8] 丁卫忠, 孙夫文, 李建华, 郑采君, 林品荣, 齐方帅. 城市地下空间探测多参数并行高密度电法系统研制[J]. 物探与化探, 2021, 45(6): 1448-1454.
[9] 陈学群, 李成光, 田婵娟, 刘丹, 辛光明, 管清花. 高密度电阻率法在咸水入侵监测中的应用[J]. 物探与化探, 2021, 45(5): 1347-1353.
[10] 苏宝, 刘晓丽, 卫晓波, 高歌, 王云鹏. 井间超高密度电阻率法溶洞探测研究[J]. 物探与化探, 2021, 45(5): 1354-1358.
[11] 李帝铨, 肖教育, 张继峰, 胡艳芳, 刘最亮, 张新. WFEM与CSAMT在新元煤矿富水区探测效果对比[J]. 物探与化探, 2021, 45(5): 1359-1366.
[12] 程云涛, 刘俊峰, 曹创华, 王荡. 衡阳盆地西北缘物化探特征及其找矿意义[J]. 物探与化探, 2021, 45(5): 1189-1195.
[13] 余永鹏, 闫照涛, 毛兴军, 杨彦成, 马永祥, 黄鹏程, 陆爱国, 张广兵. 巨厚新生界覆盖区煤炭勘查中的电震综合方法应用[J]. 物探与化探, 2021, 45(5): 1231-1238.
[14] 吴教兵, 黎峻良, 江兰, 陆俊宏, 潘黎黎, 韦王秋. 综合物探方法在广西罗城县活动断裂鉴定中的应用[J]. 物探与化探, 2021, 45(2): 346-354.
[15] 魏海民, 李星, 孙帮涛, 周胜, 牛杰. 地球物理方法在帷幕注浆治水中的探测分析[J]. 物探与化探, 2021, 45(1): 245-251.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com