Please wait a minute...
E-mail Alert Rss
 
物探与化探  2022, Vol. 46 Issue (1): 258-267    DOI: 10.11720/wtyht.2022.2498
  工程勘查 本期目录 | 过刊浏览 | 高级检索 |
综合利用多道瞬态面波和微动探测分析斜坡内部结构
李巧灵1(), 张辉2, 雷晓东1(), 李晨1, 房浩3, 关伟1, 韩宇达1, 赵旭辰1
1.北京市地质勘察技术院,北京 100120
2.中国地质科学院,北京 100037
3.中国地质环境监测院,北京 100081
Analyses of internal structure of slopes using multi-channel transient surface wave exploration and microtremor survey
LI Qiao-Ling1(), ZHANG Hui2, LEI Xiao-Dong1(), LI Chen1, FANG Hao3, GUAN Wei1, HAN Yu-Da1, ZHAO Xu-Chen1
1. Beijing Institute of Geo-exploration Technology,Beijing 100120,China
2. Chinese Academy of Geological Sciences,Beijing 100037,China
3. China Institute of Geo-Environment Monitoring,Beijing 100081,China
全文: PDF(4589 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

针对杭州部分地区残坡积层厚度薄、地形条件较差的特点,在余杭区鸬鸟镇典型斜坡段,开展了多道瞬态面波和微动探测工作,对这二项技术在斜坡内部结构调查中的适用性和有效性进行分析。分别基于频率—波数(F-K)和空间自相关(SPAC)法提取频散曲线,计算得到速度剖面,进而对表层含角砾粉质黏土、全风化凝灰岩、强风化凝灰岩及中—微风化凝灰岩之间的界面进行了划分。结果表明:面波勘探具有很好的分层性,能有效区分残坡积层覆盖斜坡内部结构;多道瞬态面波和微动探测计算得到的瑞利波相速度变化趋势一致,表层含角砾粉质黏土对应瑞利波相速度小于300 m/s,全风化凝灰岩对应瑞利波相速度为300~400 m/s,强风化凝灰岩对应瑞利波相速度为400~600 m/s,与钻孔资料基本吻合。数据分析还表明,频率小于15 Hz时,微动探测空间自相关函数与第一类零阶贝塞尔函数具有很好的拟合关系,高于15 Hz时,拟合精度有所降低。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李巧灵
张辉
雷晓东
李晨
房浩
关伟
韩宇达
赵旭辰
关键词 残坡积层斜坡结构微动探测多道瞬态面波空间自相关(SPAC)频率—波数法(F-K)    
Abstract

According to the characteristics of thin eluvium and poor topographic conditions in research area,this paper analyzes the suitability and effectiveness of multi-channel transient surface wave and microtremor survey technology in investigating slope internal structure of the typical slope in Luniao Town,Yuhang District,Hangzhou Ctity.The dispersion curve is extracted using frequency-wave number (F-K) and spatial autocorrelation method(SPAC).Based the velocity profile,the surface silty clay with breccia,completely weathered tuff,strongly weathered tuff and medium-slightly weathered tuff is interpreted.The results show that the surface wave exploration can effectively distinguish the internal structure of slope covered by thin eluvium.Both multi-channel transient surface wave and microtremor survey have a high accuracy in depth interpretation of the interface between strongly weathered and medium-slightly weathered tuff,which is well consistent with the borehole data,and there is a little bit of error in depth interpretation of the interface between surface silty clay with breccia and completely weathered tuff.The data analysis also shows that the fitting relationship between spatial autocorrelation function and Bessel function J0 is good when frequency less than 15 Hz,and the accuracy lose when it is higher than 15 Hz.Furthermore,the microtremor survey velocity is generally lower than the multi-channel transient surface waves exploration velocity.

Key wordseluvium and deluvium    slop structure    microtremor survey    multi-channel transient surface wave    spatial autocorrelation(SPAC)    frequency wave number(F-K)
收稿日期: 2020-11-02      修回日期: 2021-09-16      出版日期: 2022-02-20
ZTFLH:  P613.4  
基金资助:中国地质调查局地质调查项目“全国地质灾害数据更新与服务”(DD20190638)
通讯作者: 雷晓东
作者简介: 李巧灵(1983-),女,高级工程师,从事地震勘探及微动探测技术方面的生产研究工作。Email: liqiaoling959@Foxmail.com
引用本文:   
李巧灵, 张辉, 雷晓东, 李晨, 房浩, 关伟, 韩宇达, 赵旭辰. 综合利用多道瞬态面波和微动探测分析斜坡内部结构[J]. 物探与化探, 2022, 46(1): 258-267.
LI Qiao-Ling, ZHANG Hui, LEI Xiao-Dong, LI Chen, FANG Hao, GUAN Wei, HAN Yu-Da, ZHAO Xu-Chen. Analyses of internal structure of slopes using multi-channel transient surface wave exploration and microtremor survey. Geophysical and Geochemical Exploration, 2022, 46(1): 258-267.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2022.2498      或      https://www.wutanyuhuatan.com/CN/Y2022/V46/I1/258
Fig.1  研究区地形地貌
Fig.2  面波数据采集排列示意
a~f—微动十字阵列半径组合示意;g—瞬态面波单端放炮多道采集排列示意
Fig.3  W02微动探测点贝塞尔函数拟合
Fig.4  部分微动测点与对应多道瞬态面波测点频散曲线对比
Fig.5  AB测线瑞利波相速度等值线断面
a—多道瞬态面波探测瑞利波相速度等值线断面;b—微动探测瑞利波相速度等值线断面
钻孔 岩性层 底界面
深度/m
厚度/m
ZK1 含角砾粉质黏土 3.3 3.3
全风化花岗岩 14 10.7
中风化花岗岩
ZK2 含角砾粉质黏土 1.5 1.5
全风化凝灰岩 5 3.5
强风化凝灰岩 10.5 4.5
中风化凝灰岩
Table 1  研究区钻孔资料统计
Fig.6  AB测线视S波速度等值线断面
[1] 詹良通, 李鹤, 陈云敏, 等. 东南沿海残积土地区降雨诱发型滑坡预报雨强—历时曲线的影响因素分析[J]. 岩土力学, 2012,33(3):872-880.
[1] Zhan L T, Li H, Chen Y M, et al. Parametric analyses of intensity-duration curve for predicting rainfall-induced landslides in residual soil slope in southeastern coastal areas of China[J]. Rock and Soil Mechanics, 2012,33(3):872-880.
[2] 刘彦华, 熊章强, 方根显, 等. 综合物探方法在泰井高速公路滑坡调查中的应用[J]. 工程地球物理学报, 2007,4(4):295-298.
[2] Liu Y H, Xiong Z Q, Fang G X, et al. Application of integrated geophysical method in the Landslide of Taihe-Jinggangshan Expressway[J]. Chinese Journal of Engineering Geophysics, 2007,4(4):295-298.
[3] 徐兴倩, 苏立君, 梁双庆. 地球物理方法探测滑坡体结构特征研究现状综述[J]. 地球物理学进展, 2015,30(3):473-482.
[3] Xu X Q, Su L J, Liang S Q. A review of geophysical detection methods of landslide structure characteristics[J]. Progress in Geophysics, 2015,30(3):473-482.
[4] 李来喜. 物探在多期次巨型滑坡勘察中的应用[J]. 工程地球物理学报, 2009,6(5):575-579.
[4] Li L X. Application of geophysical prospecting to multiple and super landslide investigation[J]. Chinese Journal of Engineering Geophysics, 2009,6(5):575-579.
[5] Mainsant G, Larose E, Brönnimann C, et al. Ambient seismic noise monitoring of a clay landslide:Toward failure prediction[J]. Journal of Geophysical Research:Earth Surface, 2012,117:1-12.
[6] Sherrod L, Schlosser K, Kozlowski A, et al. Geophysical characterization of the Keene Valley Landslide in New York State[J]. Journal of Environmental & Engineering Geophysics, 2014,19(3):139-155.
[7] Shan C L, Bastani M, Malehmir A, et al. Integrated 2D modeling and interpretation of geophysical and geotechnical data to delineate quick clays at a landslide site in southwest Sweden[J]. Geophysics, 2014,79(4):EN61-EN75.
doi: 10.1190/geo2013-0201.1
[8] 吕擎峰, 卜思敏, 王生新, 等. 综合物探法在滑坡稳定性评价中的应用研究[J]. 岩土工程学报, 2015,37(s1):142-147.
[8] Lyu Q F, Bo S M, Wang S X, et al. Application of comprehensive geophysical prospecting method in stability evaluation of landslide[J]. Chinese Journal of Geotechnical Engineering, 2015,37(s1):142-147.
[9] Petronio L, Jacopo B, Giorgio C. Reflection seismic and surface wave analysis on complex heterogeneous media:The case of mount toc landslide In the vajont valley[J]. Italian Journal of Engineering Geology and Environment, 2013(6):593-598.
[10] Xu X Q, Su L J, Zhang G D, et al. Analysis on shear wave velocity structure of a gravel landslide based on dual-source surface wave method[J]. Landslides, 2017,14(3):1127-1137.
doi: 10.1007/s10346-016-0780-9
[11] Wang F, Okeke C U, Kogure T, et al. Assessing the internal structure of landslide dams subject to possible piping erosion by means of microtremor chain array and self-potential surveys[J]. Engineering Geology, 2018,234:11-26.
doi: 10.1016/j.enggeo.2017.12.023
[12] Dwa D W, Ria A A, Widya U. Application of microtremor HVSR method for assessing site effect in residual soil slope[J]. International Journal of Basic & Applied Science, 2011,11(4):100-105.
[13] Gaudio V D, Wasowski J, Lee C T. Inferring seismic response of landslide-prone slopes from microtremor study[G]. Margottini C,Canuti P,Sassa K,eds.Landslide Science and Practice,Springer,Berlin,Heidelberg, 2013:199-209.
[14] 刘庆华, 鲁来玉, 王凯明. 主动源和被动源面波浅勘方法综述[J]. 地球物理学进展, 2015,30(6):2906-2922.
[14] Liu Q H, Lu L Y, Wang K M. Review on the active and passive surface wave exploration method for the near-surface structure[J]. Progress in Geophsics, 2015,30(6):2906-2922.
[15] 肖柏勋, 李长征. 瑞雷面波勘探技术研究述评[J]. 工程地球物理学报, 2004,1(1):38-47.
[15] Xiao B X, Li C Z. Review of rayleigh prospecting technology research[J]. Chinese Journal of Engineering Geophysics, 2004,1(1):38-47.
[16] 李庆春, 邵广周, 刘金兰, 等. 瑞雷面波勘探的过去、现在和未来[J]. 地球科学与环境学报, 2006,28(3):74-77.
[16] Li Q C, Shao G Z, Liu J L, et al. Past,present and future of Rayleigh surface wave exploration[J]. Journal of Earth Sciences and Environment, 2006,28(3):74-77.
[17] 刘云祯, 王振东. 瞬态面波法的数据采集处理系统及其应用实例[J]. 物探与化探, 1996,20(1):28-34.
[17] Liu Y Z, Wang Z D. Data collection and processing system of transient surface wave method and examples of its application[J]. Geophysical and Geochemical Exploration, 1996,20(1):28-34.
[18] 冉伟彦, 王振东. 长波微动法及其新进展[J]. 物探与化探, 1994,18(1):28-34.
[18] Ran W Y, Wang Z D. The long-wave microtremors method and its advances[J]. Geophysical and Geochemical Exploration, 1994,18(1):28-34.
[19] 何正勤, 丁志峰, 贾辉, 等. 用微动中的面波信息探测地壳浅部的速度结构[J]. 地球物理学报, 2007,50(2):170-176.
[19] He Z Q, Ding Z F, Jia H, et al. To determine the velocity structure of shallow crust with surface wave information in microtremors[J]. Chinese Journal of Geophysics, 2007,50(2):170-176.
[20] 徐佩芬, 李传金, 凌甦群, 等. 利用微动勘察方法探测煤矿陷落柱[J]. 地球物理学报, 2009,52(7):1923-1930.
[20] Xu P F, Li C J, Ling S Q, et al. Mapping collapsed columns in coal mines utilizing microtremor survey methods[J]. Chinese Journal of Geophysics, 2009,52(7):1923-1930.
[21] 徐佩芬, 侍文, 凌甦群, 等. 二维微动剖面探测“孤石”:以深圳地铁7号线为例[J]. 地球物理学报, 2012,55(6):2120-2128.
[21] Xu P F, Shi W, Ling S Q, et al. Mapping sphercally weathered “boulders” using 2D microtremor profiling method:A case study along subway line 7 in Shenzhen[J]. Chinese Journal of Geophysics, 2012,55(6):2120-2128.
[22] 李巧灵, 雷晓东, 李晨, 等. 微动测深法探测厚覆盖层结构——以北京城市副中心为例[J]. 地球物理学进展, 2019,34(4):1635-1643.
[22] Li Q L, Lei X D, Li C, et al. Exploring thick overburden structure by microtremor survey:A case study in the subsidiary administrative center[J]. Progress in Geophysics, 2019,34(4):1635-1643.
[23] 李巧灵, 雷晓东, 杨勇, 等. 北京西郊玉泉山地区岩溶水强径流路径地球物理分析[J]. 中国地质, 2019,46(2):346-358.
[23] Li Q L, Lei X D, Yang Y, et al. A study of flow path in Yuquanshan area of western Beijing based on integrated geoghysical technology[J]. Geology in China, 2019,46(2):346-358.
[24] 许新刚, 岳建华, 李娟娟, 等. 面波勘查技术及在滑坡地质调查中的应用研究[J]. 地球物理学进展, 2016,31(3):1367-1372.
[24] Xu X G, Yue J H, Li J J, et al. Surface wave exploration technique and its application in landslide geology survey[J]. Progress in Geoghysics, 2016,31(3):1367-1372.
[25] 崔建文, 乔森. 瞬态面波勘探技术在工程地质中的应用[J]. 岩土工程学报, 1996,18(3):35-40.
[25] Cui J W, Qiao S. Application of transient Rayleigh surface wave prospecting method to engineering geology[J]. Chinese Journal of Geotechnical Engineering, 1996,18(3):35-40.
[26] 庄师柳. 瞬态面波法在滑坡勘察中的应用效果[J]. 华南地震, 2010,30(3):116-122.
[26] Zhuang S L. Applications of the transient surface wave method in landslide investigation[J]. South China Journal of Seismology, 2010,30(3):116-122.
[27] Wang G, Furuya G Doi I, et al. Investigation on the internal structure of Higashi-Takezawa landslide dam using surface wave method and microtremor array measurements[J]. Journal of the Japan Landslide Society, 2015,52(5):233-238.
doi: 10.3313/jls.52.233
[28] Yoshiya O. Application of surface wave and micro-tremor survey in landslide investigation in the Three Gorges reservoir area[J]. Landslides and Engineered Slopes, 2008,S1:307-312.
[29] Renalier F, Jongmans D, Campillo M, et al. Shear wave velocity imaging of the Avignonet landslide (France) using ambient noise cross correlation[J]. Journal of Geophysical Research Earth Surface, 2010,115(F3):1-14.
[30] Aki K. Space and time spectra of stationary stochastic waves,with special reference to microtremors[J]. Bull. Earthquake Res. Inst. Tokyo Univ., 1957,35:415-456.
[31] 李娜, 何正勤, 叶太兰, 等. 天然源面波勘探台阵对比试验[J]. 地震学报, 2015,37(2):323-334.
[31] Li N, He Z Q, Ye T L, et al. Test for comparison of array layout in natural source surface wave exploration[J]. Acta Seismologica Sinica, 2015,37(2):323-334.
[32] 黄真萍, 朱鹏超, 胡艳. 主动源与被动源面波勘探方法对比分析与应用[J]. 路基工程, 2015(1):15-19.
[32] Huang Z P, Zhu P C, Hu Y. Comparison and application of active and passive surface wave methods[J]. Subgrade Engineering, 2015(1):15-19.
[33] Lin F C, Schmandt B, Tsai V C. Joint inversion of Rayleigh wave phase velocity and ellipticity using USArray:Constraining velocity and density structure in the upper crust[J]. Geophysical Research Letters, 2012,39(12):1-7.
[34] 尹晓菲, 胥鸿睿, 夏江海, 等. 一种基于层析成像技术提高浅地表面波勘探水平分辨率的方法[J]. 地球物理学报, 2018,61(6):2380-2395.
[34] Yin X F, Xu H R, Xia J H, et al. A travel-time tomography method for improving horizontal resolution of high-frequency surface-wave exploration[J]. Chinese Journal of Geophysics, 2018,61(6):2380-2395.
[35] Renalier F, Jongmans D, Campillo M, et al. Shear wave velocity imaging of the Avignonet landslide (France) using ambient noise cross correlation[J]. Journal of Geophysical Research Earth Surface, 2010,115(F3):1-14.
[36] 刘启元, 李昱, 陈九辉, 等. 汶川Ms8.0地震:地壳上地幔S波速度结构的初步研究[J]. 地球物理学报, 2009,52(2):309-319.
[36] Liu Q Y, Li Y, Chen J H, et al. Wenchuan Ms8.0 earthquake:Preliminary study of the S-wave velocity structure of the crust and upper mantle[J]. Chinese Journal of Geophysics, 2009,52(2):309-319.
[37] 何正勤, 叶太兰, 丁志峰. 华北东北部的面波相速度层析成像研究[J]. 地球物理学报, 2009,52(5):109-118.
[37] He Z Q, Ye T L, Ding Z F. Surface wave tomography for the phase velocity in the northeastern part of North China[J]. Chinese Journal of Geophysics, 2009,52(5):109-118.
[38] 曾校丰, 钱荣毅, 邓新生, 等. 油气反射波地震勘探记录中面波信息的提取[J]. 物探与化探, 2001,25(6):443-446.
[38] Zeng X F, Qian R Y, Deng X S, et al. The extraction of surface wave information from the record of oil-gas reflection wave seismic exploration[J]. Geophysical and Geochemical Exploration, 2001,25(6):443-446.
[1] 王军成, 赵振国, 高士银, 罗传根, 李琳, 徐明钻, 李勇, 袁国境. 综合物探方法在滨海县月亮湾地热资源勘查中的应用[J]. 物探与化探, 2023, 47(2): 321-330.
[2] 刘伟, 黄韬, 王庭勇, 刘怡, 张继, 刘文涛, 张琦斌, 李强. 综合物探方法在城市隐伏断裂探测中的应用[J]. 物探与化探, 2021, 45(4): 1077-1087.
[3] 章惠, 隋少强, 钱烙然, 汪新伟. 多种非震方法在山东齐河地热勘查中的应用[J]. 物探与化探, 2020, 44(4): 727-733.
[4] 唐文, 李江, 汪铁望. 黄土塬区多道瞬态面波数据采集试验分析[J]. 物探与化探, 2020, 44(1): 165-170.
[5] 贾辉, 陈义军, 张辉, 苏兆锋, 肖敏, 白朝旭. 多道瞬态面波法在回填地基调查中的应用[J]. 物探与化探, 2012, 36(5): 884-886.
[6] 夏学礼, 仇恒永, 孙秀容, 王治华, 王书增. 多道瞬态面波勘探频散曲线唯一性问题[J]. 物探与化探, 2008, 32(2): 168-170,174.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com