Please wait a minute...
E-mail Alert Rss
 
物探与化探  2024, Vol. 48 Issue (6): 1709-1719    DOI: 10.11720/wtyht.2024.1535
  工程勘察 本期目录 | 过刊浏览 | 高级检索 |
城市环境下的高阶伪随机电磁信号有效信息提取——以济南市某轨道交通工程区为例
马振波1(), 周长宇2, 阮进平3, 张文艳4
1.河南省地质研究院,河南 郑州 450016
2.香港中文大学(深圳) 理工学院,广东 深圳518000
3.山东大学 岩土与地下工程研究院,山东 济南 250000
4.山东省煤田地质规划勘察研究院,山东 济南 250000
Effective information extraction from high-order pseudo-random electromagnetic signals in urban environments:A case study of a rail transit engineering area in Jinan City, China
MA Zhen-Bo1(), ZHOU Chang-Yu2, RUAN Jin-Ping3, ZHANG Wen-Yan4
1. Henan Academy of Geology, Zhengzhou 450016, China
2. School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518000, China
3. Institute of Geotechnical and Underground Engineering, Shandong University, Jinan 250000, China
4. Shandong Research Institute of Coal Geological Planning and Prospecting, Jinan 250000, China
全文: PDF(7825 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

高阶伪随机电磁信号的频谱包含了勘探工程所需的全部频率,具有提升工作效率及抗干扰性能强的特点,在城市环境下的电磁勘探中得到应用。因此,本文在济南城市轨道交通8号线一期工程专项勘查区内,具有强烈工频干扰地区进行的电磁勘探工作中,应用了高阶伪随机电磁信号进行有效信息的提取。为了高效率地提取高质量的有效信息,作者采用包络评价算法与高阶伪随机电磁信号相结合的方案。通过频谱包络值来较为准确地估计信号实际受到干扰的情况,对接收信号进行筛选,进一步避开工频干扰及其谐波影响,获得了更多的有效频率和地电信息,为后续反演解释提供了丰富的有效电磁数据。该方法为今后复杂城市环境下的电磁勘探工作提供了一种地下有效信息的提取技术。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马振波
周长宇
阮进平
张文艳
关键词 电磁勘探高阶伪随机信号包络评价城市环境    
Abstract

The spectra of high-order pseudo-random electromagnetic signals encompass all the frequencies required for exploration engineering, it has the characteristics of enhancing work efficiency and strong anti-interference capability, and has been applied in electromagnetic exploration in urban environments. This study extracted effective information from high-order pseudo-random signals in the electromagnetic survey conducted in areas with strong powerline interference within the special exploration area of the Phase I engineering of the Jinan Urban Rail Transit Line 8. To efficiently extract high-quality effective information, an envelope assessment algorithm was combined with high-order pseudo-random signals. Specifically, the actual signal interference was accurately estimated by analyzing the spectral envelope values. This allows for screening received signals, thus further mitigating the impacts of powerline interference and its harmonics. As a result, more effective frequency and geoelectric information were obtained, providing abundant effective electromagnetic data for subsequent inversion and interpretation. The novel method serves as a technique for effective information extraction for future electromagnetic sounding in a complex urban environment.

Key wordselectromagnetic survey    high-order pseudo-random signal    envelope assessment    urban environment
收稿日期: 2023-12-15      修回日期: 2024-09-18      出版日期: 2024-12-20
ZTFLH:  P631  
基金资助:河南省科技厅基础性科研项目“半航空频率域电磁响应特征分析与视电阻率成像算法研究”(2023-331-XM025-KT01)
引用本文:   
马振波, 周长宇, 阮进平, 张文艳. 城市环境下的高阶伪随机电磁信号有效信息提取——以济南市某轨道交通工程区为例[J]. 物探与化探, 2024, 48(6): 1709-1719.
MA Zhen-Bo, ZHOU Chang-Yu, RUAN Jin-Ping, ZHANG Wen-Yan. Effective information extraction from high-order pseudo-random electromagnetic signals in urban environments:A case study of a rail transit engineering area in Jinan City, China. Geophysical and Geochemical Exploration, 2024, 48(6): 1709-1719.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2024.1535      或      https://www.wutanyuhuatan.com/CN/Y2024/V48/I6/1709
Fig.1  城市环境下背景噪声特征分布
Fig.2  13频2n序列伪随机信号波形(a)及频谱(b)
Fig.3  39频高阶伪随机信号波形(a)及频谱(b)
Fig.4  包络评价算法流程
Fig.5  实测数据波形(a)及频谱(b)
Fig.6  不同评价方法典型指标对比
Fig.7  不同评价方法对应的提取后归一化电场值曲线
Fig.8  测线测点实际布置
Fig.9  GY3-1720实测数据波形(a)及频谱(b)
Fig.10  实测39频高阶伪随机信号波形(a)及频谱(b)、(c)
测点数据编号 提取前有效
频率数
提取后有效
频率数
提升比例
GY3-1960 34 81 138%
GY3-2320 41 106 159%
GY3-1720 41 55 34%
Table1  实例数据应用结果统计
Fig.11  GY3-1960潜在有效频率提取结果
(为方便观察,本图及后续同类图中提取前曲线对应左侧y轴,提取后曲线对应右侧y轴)
Fig.12  GY3-2320潜在有效频率提取结果
Fig.13  GY3-1720潜在有效频率提取结果
[1] 李肃义, 张熠, 张继昆, 等. 海洋可控源电磁信号噪声压制综述[J]. 石油地球物理勘探, 2020, 55(6):1383-1394.
[1] Li S Y, Zhang Y, Zhang J K, et al. A review of noise suppression methods for marine controlled source electromagnetic signals[J]. Oil Geophysical Prospecting, 2020, 55(6):1383-1394.
[2] 葛双超, 李斌. 大地电磁法人文噪声干扰特点及处理方法综述[J]. 物探化探计算技术, 2021, 43(5):609-619.
[2] Ge S C, Li B. Review of the characteristics and processing methods of human noise interference in magnetotelluric[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2021, 43(5):609-619.
[3] Bianchi C, Meloni A. Natural and man-made terrestrial electromagnetic noise:An outlook[J]. Annals of Geophysics, 2007, 50(3):435-445.
[4] Butler K E, Russell R D. Cancellation of multiple harmonic noise series in geophysical records[J]. Geophysics, 2003, 68(3):1083-1090.
[5] Tang J T, Li G, Zhou C, et al. Power-line interference suppression of MT data based on frequency domain sparse decomposition[J]. Journal of Central South University, 2018, 25:2150-2163.
[6] Larsen J J, Lévy L, Asif M R. Removal of powerline noise in geophysical datasets with a scientific machine-learning based approach[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:1-10.
[7] 徐志敏, 汤井田, 强建科. 矿集区大地电磁强干扰类型分析[J]. 物探与化探, 2012, 36(2):214-219.
[7] Xu Z M, Tang J T, Qiang J K. An analysis of the ma gnetotelluric strong interference types in ore concentration areas[J]. Geophysical and Geochemical Exploration, 2012, 36(2):214-219.
[8] 李桐林, 刘福春, 韩英杰, 等. 50万伏超高压输电线的电磁噪声的研究[J]. 长春科技大学学报, 2000, 30(1):80-83.
[8] Li T L, Liu F C, Han Y J, et al. The study of electromagnetic noise created by high voltage transmission line[J]. Journal of Changchun University of Science and Technology, 2000, 30(1):80-83.
[9] Pádua M B, Padilha A L, Vitorello Í. Disturbances on magnetotelluric data due to DC electrified railway:A case study from southeastern Brazil[J]. Earth Planets & Space, 2002, 54(5):591-596.
[10] Villante U, Piancatelli A, Palangio P. On the man-made contamination on ULF measurements:Evidence for disturbances related to an electrified DC railway[J]. Annales Geophysical, 2014, 32(9):1153-1161.
[11] 周聪, 汤井田, 原源, 等. 强干扰区含噪电磁场的时空分布特征[J]. 吉林大学学报:地球科学版, 2020, 50(6):1870-1886.
[11] Zhou C, Tang J T, Yuan Y, et al. Spatial and temporal distribution characteristics of electromagnetic fields in strong noise area[J]. Journal of Jilin University:Earth Science Edition, 2020, 50(6):1870-1886.
[12] 何继善. 广域电磁法和伪随机信号电法[M]. 北京: 高等教育出版社, 2010.
[12] He J S. Wide-field electromagnetic method and pseudo-random signal electricity method[M]. Beijing: Higher Education Press, 2010.
[13] 何继善. 广域电磁测深法研究[J]. 中南大学学报:自然科学版, 2010, 41(3):1065-1072.
[13] He J S. Research on wide field electromagnetic sounding method[J]. Journal of Central South University:Natural Science Edition, 2010, 41(3):1065-1072.
[14] 汤井田, 任政勇, 周聪, 等. 浅部频率域电磁勘探方法综述[J]. 地球物理学报, 2015, 58(8):2681-2705.
doi: 10.6038/cjg20150807
[14] Tang J T, Ren Z Y, Zhou C et al. Frequency-domain electromagnetic methods for exploration of the shallow subsurface:A review[J]. Chinese Journal of Geophysics, 2015, 58(8):2681-2705.
[15] 何继善. 三元素集合中的自封闭加法与2n系列伪随机信号编码[J]. 中南大学学报:自然科学版, 2010, 41(2):632-637.
[15] He J S. Closed addition in a three-element set and 2n sequence pseudo-random signal coding[J]. Journal of Central South University:Science and Technology, 2010, 41(2):632-637.
[16] Yang Y, He J S, Li D Q. Energy distribution and effective components analysis of 2n sequence pseudo-random signal[J]. Transactions of Nonferrous Metals Society of China, 2021, 31(7):2102-2115.
doi: 10.1016/S1003-6326(21)65641-8
[17] Yang Y, He J S, Ling F, et al. Distributed wide field electromagnetic method based on high-order 2n sequence pseudo random signal[J]. Transactions of Nonferrous Metals Society of China, 2022, 32(5):1609-1622.
[18] Zhou C, Yang Y, Zhang H, et.al. A novel envelope algorithm for estimating and evaluating noise effect in stationary controlled-source electromagnetic data[J]. Journal of Applied Geophysics, 2022, 207:104864.
[1] 秦长春, 王国顺, 李婧. 主动源面波采集装置改进及在地铁施工勘察中的应用[J]. 物探与化探, 2024, 48(1): 264-271.
[2] 刘铁华, 刘铁, 张邦, 卞友艳, 张占荣, 化希瑞. 基于非均匀介质的谱比曲线正演技术及应用[J]. 物探与化探, 2022, 46(5): 1276-1282.
[3] 李万伦, 田黔宁, 刘素芳, 吕鹏, 姜重昕, 贾凌霄. 城市浅层地震勘探技术进展[J]. 物探与化探, 2018, 42(4): 653-661.
[4] 刘飞, 成杭新, 杨柯, 赵传冬, 李括, 彭敏, 刘应汉. 广州市土壤—大气界面Hg交换通量研究[J]. 物探与化探, 2014, 38(2): 331-338.
[5] 张运霞. PROTEM67D瞬变电磁系统探测多层采空区的效果[J]. 物探与化探, 2014, 38(1): 180-184.
[6] 梁生贤, 张胜业, 黄理善, 孙士超. 大地电磁勘探中的电力线工频干扰[J]. 物探与化探, 2012, 36(5): 813-816.
[7] 毛立峰, 陈斌, 吕东伟. 测高数据不准时的直升机航空瞬变电磁一维反演方法理论研究[J]. 物探与化探, 2011, 35(3): 402-405.
[8] 李凤全, 潘虹梅, 叶玮, 朱丽东, 曹志纯. 城市灰尘地球化学研究进展[J]. 物探与化探, 2009, 33(3): 313-318.
[9] 朱立新, 马生明, 王之峰. 城市环境地球化学研究新进展[J]. 物探与化探, 2004, 28(2): 95-98.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com