Please wait a minute...
E-mail Alert Rss
 
物探与化探  2024, Vol. 48 Issue (4): 996-1005    DOI: 10.11720/wtyht.2024.1457
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
基于模型的薄互层地震反射滤波效应研究
罗敬(), 孙成禹()
中国石油大学(华东) 地球科学与技术学院,山东 青岛 266580
A model-based study of the filtering effects of thin-interbedded reservoirs on seismic reflection waves
LUO Jing(), SUN Cheng-Yu()
School of Geosciences,China University of Petroleum (East China),Qingdao 266580,China
全文: PDF(5443 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

薄层和薄互层油气藏的开发越来越受到重视,但由于地震资料对薄层的分辨能力有限,且传统的褶积模型无法模拟出薄层中复杂的波场传播现象,导致这类储层的地震预测难度较大。针对这一问题,本文以层状介质中的传递矩阵法为基础,发展了一种垂直入射时的反射率法,并运用该方法对多组典型的薄互层模型做正演模拟,然后对正演模拟的结果做频谱分析,研究薄互层对地震反射波的滤波效应。相较于层状介质中的传递矩阵法,垂直入射时的反射率法在更适用于纵波入射下的薄互层研究的同时,大大提升了反射率法正演的效率;而在频域对薄互层反射滤波效应做研究也在一定程度上解决了时域上分辨率不足的缺点。对于薄互层模型的频谱分析结果表明,垂直入射时的反射率法能较好地保留薄互层的层间信息,对根据该方法得出的正演结果做频谱分析,频谱曲线的幅值和陷波点的变化能反映出薄互层中互层数和砂泥比的变化情况,这对于油田后期的精细勘探阶段中薄储层空间展布规律及其性质的确定具有重要的意义。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
罗敬
孙成禹
关键词 薄互层模型垂直入射的反射率法频谱分析陷波现象    
Abstract

The exploitation of thin-bedded and thin-interbedded hydrocarbon reservoirs has garnered increasing attention.However,seismic data of thin-bedded reservoirs exhibit low resolution,and conventional convolution models fail to simulate the complex wave field propagation phenomena in thin-bedded reservoirs,complicating the seismic prediction of such reservoirs.Hence,based on the transfer matrix method for layered media,this study developed a normal-incidence reflectance method.Using the new method,it conducted forward modeling on several typical thin-interbedded reservoir models.Then,the forward modeling results were analyzed through frequency spectrum analysis to explore the filtering effects of thin-interbedded reservoirs on seismic reflection waves.Compared to the transfer matrix method for layered media,the normal-incidence reflectance method is more applicable to the investigation of thin-interbedded reservoirs under longitudinal wave incidence,significantly enhancing the forward modeling efficiency.Moreover,studying the reflection filtering effects of thin-interbedded reservoirs in the frequency domain somewhat eliminates the shortcomings of insufficient resolution in the time domain.The frequency spectrum analysis of thin-interbedded reservoir models shows that the normal-incidence reflectance method can effectively preserve the interbed information of thin-interbedded reservoirs.As revealed by the frequency spectrum analysis of the forward modeling results based on this method,the changes in the amplitudes and notch points of frequency spectrum curves can reflect the changes in the number of interbeds and sandstone-mudstone ratios in thin-interbedded reservoirs.This finding is critical for determining the spatial distributions and properties of thin-bedded reservoirs in the fine-scale exploration of oilfields.

Key wordsthin-interbedded reservoir model    normal-incidence reflectance method    frequency spectrum analysis    notch phenomenon
收稿日期: 2023-11-01      修回日期: 2024-05-10      出版日期: 2024-08-20
ZTFLH:  P631.4  
基金资助:国家自然科学基金项目(42174140)
通讯作者: 孙成禹(1968-),男,教授,博士生导师,主要从事地震波理论和地震勘探的科研和教学工作。Email:suncy@upc.edu.cn
作者简介: 罗敬(1999-),男,硕士在读,主要从事薄互层地震响应研究工作。Email:2025491189@qq.com
引用本文:   
罗敬, 孙成禹. 基于模型的薄互层地震反射滤波效应研究[J]. 物探与化探, 2024, 48(4): 996-1005.
LUO Jing, SUN Cheng-Yu. A model-based study of the filtering effects of thin-interbedded reservoirs on seismic reflection waves. Geophysical and Geochemical Exploration, 2024, 48(4): 996-1005.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2024.1457      或      https://www.wutanyuhuatan.com/CN/Y2024/V48/I4/996
Fig.1  层状介质模型
Fig.2  韵律型薄互层模型
薄互层的层厚分别为:a—21×1 m;b—21×2 m;c—42×1 m;d—42×2 m
Fig.3  递增型薄互层模型
薄互层的层厚分别为:a—21×1 m;b—21×2 m;c—42×1 m;d—42×2 m
Fig.4  递减型薄互层模型
薄互层的层厚分别为:a—21×1 m;b—21×2 m;c—42×1 m;d—42×2 m
Fig.5  砂岩累计厚度不变的薄互层模型
砂岩的分层情况分别为:a—1×18 m;b—2×9 m;c—3×6 m;d—6×3 m;e—9×2 m;f—18×1 m
Fig.6  总厚度不变的薄互层模型
薄互层的分层情况分别为:a—1×15 m;b—3×5 m;c—5×3 m;d—15×1 m
Fig.7  单套砂泥层砂泥比变化的薄互层模型
单套砂泥层砂泥比分别为:a—0.3;b—1;c—3;d—9
Fig.8  地层结构变化的薄互层模型的正演炮记录
a—韵律型薄互层模型的正演炮记录;b—递增型薄互层模型的正演炮记录;c—递减型薄互层模型的正演炮记录;从左至右薄互层的层厚分别为:21×1 m;21×2 m;42×1 m;42×2 m
Fig.9  砂泥比变化的薄互层模型的正演炮记录
a—砂岩累计厚度不变的薄互层模型的正演炮记录,从左至右砂岩的分层情况分别为:1×18 m,2×9 m,3×6 m,6×3 m,9×2 m,18×1 m;b—总厚度不变的薄互层模型的正演炮记录,从左至右薄互层的分层情况分别为:1×15 m,3×5 m,5×3 m,15×1 m;c—单套砂泥层砂泥比变化的薄互层模型的正演炮记录从左至右单套砂泥层砂泥比分别为:0.3,1,3,9
Fig.10  地层结构变化的薄互层模型的反射波波形
a—韵律型薄互层模型;b—递增型薄互层模型;c—递减型薄互层模型
Fig.11  砂泥比变化的薄互层模型的反射波波形
a—砂泥累计厚度不变的薄互层模型;b—总厚度不变的薄互层模型;c—单套砂泥比变化薄互层模型
Fig.12  地层结构变化的薄互层模型的频谱
a—韵律型薄互层模型;b—递增型薄互层模型;c—递减型薄互层模型
Fig.13  砂泥比变化的薄互层模型的频谱
a—砂岩累计厚度不变的薄互层模型;b—总厚度不变的薄互层模型;c—单套砂泥层砂泥比变化的薄互层模型
[1] Ricker N. Wavelet contraction,wavelet expansion,and the control of seismic resolution[J]. Geophysics, 1953, 18(4):769.
[2] Sengbush R L, Lawrence P L, McDonal F J. Interpretation of synthetic seismograms[J]. Geophysics, 1961, 26(2):138-157.
[3] Widess M B. How thin is a thin bed?[J]. Geophysics, 1973, 38(6):1176-1180.
[4] Kallweit R S, Wood L C. The limits of resolution of zero-phase wavelets[J]. Geophysics, 1982, 47(7):1035-1046.
[5] Thomson W T. Transmission of elastic waves through a stratified solid medium[J]. Journal of Applied Physics, 1950, 21(2):89-93.
[6] Fuchs K. The reflection of spherical waves from transition zones with arbitrary depth-dependent elastic moduli and density[J]. Journal of Physics of the Earth, 1968, 16:27-41.
[7] Fuchs K, Müller G. Computation of synthetic seismograms with the reflectivity method and comparison with observations[J]. Geophysical Journal International, 1971, 23(4):417-433.
[8] Mueller G. The reflectivity method:A tutorial[J]. Journal of Geophysics, 1985, 58(1):153-174.
[9] Kennett B L N. Seismic waves in laterally inhomogeneous media[J]. Geophysical Journal International, 1972, 27(3):301-325.
[10] Kennett B L N, Kerry N J. Seismic waves in a stratified half space[J]. Geophysical Journal International, 1979, 57(3):557-583.
[11] Kennett B L N. Seismic waves in a stratified half space—II.Theoretical seismograms[J]. Geophysical Journal International, 1980, 61(1):1-10.
[12] Kennett B L N, Illingworth M R. Seismic waves in a stratified half space—III.Piecewise smooth models[J]. Geophysical Journal International, 1981, 66(3):633-675.
[13] Kennett B. Seismic wave propagation in stratified media[M]. Canberra: ANU Press, 2009.
[14] Phinney R, Odom R, Fryer G. Rapid generation of synthetic seismograms in layered media by vectorization of the algorithm[J]. Bulletin of the Seismological Society of America, 1987, 77:2218-2226.
[15] Carcione J M. Wave fields in real media[M]. Oxford: Elsevier, 2001.
[16] 杨凯, 雷晓. 在频率域中求取薄层厚度和反射系数的新方法[J]. 西南石油学院学报, 1993, 15(S1):73-75.
[16] Yang K, Lei X. A new method for calculating the thickness and reflection coefficient of thin layer in frequency domain[J]. Journal of Southwest Petroleum University:Science & Technology Edition, 1993, 15(S1):73-75.
[17] 张玉芬, 熊维纲. 石油地震勘探中的薄层解释研究方法综述[J]. 地质科技情报, 1993, 12(4):81-88.
[17] Zhang Y F, Xiong W G. Advancement of thin-bed studies in oil seismic exploration[J]. Geological Science and Technology Information, 1993, 12(4):81-88.
[18] 邵治龙, 贺振华, 黄德济. 小波变换与最大熵法联合计算薄层厚度[J]. 石油地球物理勘探, 1998, 33(2):204-213.
[18] Shao Z L, He Z H, Huang D J. Thin-layer thickness estimation using wavelet transform and maximum entropy method[J]. Oil Geophysical Prospecting, 1998, 33(2):204-213.
[19] 蒋龙聪. 薄互层储层地震响应时频分析研究[D]. 武汉: 中国地质大学, 2008.
[19] Jiang L C. The method of time-frequency analysis applied in thin interbedded reservoir[D]. Wuhan: China University of Geosciences, 2008.
[20] 张晶. 薄互层时频变化规律正演模拟研究[D]. 大庆: 东北石油大学, 2013.
[20] Zhang J. Forward modeling studies on the time-frequency transform law of thin interbed[D]. Daqing: Northeast Petroleum University, 2013.
[21] 王赟, 杨春, 芦俊. 薄互层弹性波反演面临的困境[J]. 地球物理学报, 2018, 61(3):1118-1135.
doi: 10.6038/cjg2018L0404
[21] Wang Y, Yang C, Lu J. Dilemma faced by elastic wave inversion in thinly layered media[J]. Chinese Journal of Geophysics, 2018, 61(3):1118-1135.
[22] 马跃华, 周宗良, 李振永, 等. 薄层分类及其地震响应分析——以大港油田两个应用研究为例[J]. 石油物探, 2018, 57(6):902-913.
doi: 10.3969/j.issn.1000-1441.2018.06.013
[22] Ma Y H, Zhou Z L, Li Z Y, et al. Classification and seismic response analysis of thin bed:Two cases study from Dagang oilfield,China[J]. Geophysical Prospecting for Petroleum, 2018, 57(6):902-913.
doi: 10.3969/j.issn.1000-1441.2018.06.013
[23] 李佳欣, 杨春, 王赟. 薄互层等效各向异性的研究现状与存在问题[J]. 石油物探, 2021, 60(2):224-237.
doi: 10.3969/j.issn.1000-1441.2021.02.004
[23] Li J X, Yang C, Wang Y. A state of the art on the equivalent anisotropy of thin interbeds[J]. Geophysical Prospecting for Petroleum, 2021, 60(2):224-237.
[24] 倪长宽, 苏明军, 袁成, 等. 基于地震沉积学的薄互层储集层分布预测方法[J]. 石油勘探与开发, 2022, 49(4):741-751.
doi: 10.11698/PED.20210805
[24] Ni C K, Su M J, Yuan C, et al. Thin-interbedded reservoirs prediction based on seismic sedimentology[J]. Petroleum Exploration and Development, 2022, 49(4):741-751.
[25] 杨震, 刘俊州, 时磊, 等. 基于快速反射率法的AVA反演技术在致密砂岩薄储层勘探中的应用[J]. 石油物探, 2023, 62(1):130-141.
doi: 10.3969/j.issn.1000-1441.2023.01.011
[25] Yang Z, Liu J Z, Shi L, et al. Application of AVA inversion technique based on rapid reflectivity method in thin tight gas reservoir exploration[J]. Geophysical Prospecting for Petroleum, 2023, 62(1):130-141.
doi: 10.3969/j.issn.1000-1441.2023.01.011
[26] 孙成禹, 万学娟, 倪长宽. 弱连接界面地层地震反射波场的正演方法[J]. 石油物探, 2007, 46(5):425-432,13.
[26] Sun C Y, Wan X J, Ni C K. Forward modeling of reflected wavefield from strata with weakly bonded interfaces[J]. Geophysical Prospecting for Petroleum, 2007, 46(5):425-432,13.
[1] 高维, 舒晴, 屈进红, 周坚鑫, 乔阳, 尹航. 航空物探飞机典型飞行状态下振动特性研究[J]. 物探与化探, 2016, 40(1): 93-99.
[2] 武军杰, 张杰, 王兴春, 杨毅, 邓晓红, 陈晓东, 赵毅. 冬瓜山矿区电磁干扰特征分析[J]. 物探与化探, 2014, 38(5): 1003-1007.
[3] 徐志敏, 汤井田, 强建科. 矿集区大地电磁强干扰类型分析[J]. 物探与化探, 2012, 36(2): 214-219.
[4] 褚宏宪, 史慧杰. 强夯振动监测应用分析[J]. 物探与化探, 2005, 29(1): 88-92.
[5] 钟世航. 弹性波频谱分析对比法检测浆砌片石挡墙质量[J]. 物探与化探, 2002, 26(3): 236-239.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com