Please wait a minute...
E-mail Alert Rss
 
物探与化探  2024, Vol. 48 Issue (2): 461-469    DOI: 10.11720/wtyht.2024.1160
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
坡折带区立体震源与平面震源资料对比分析
陈凤英1,2(), 王祥春2, 孙健3, 李灿苹1, 任小庆4
1.广东海洋大学 电子与信息工程学院,广东 湛江 524088
2.中国地质大学(北京) 地球物理与信息技术学院,北京 100083
3.中海油服物探事业部 物探研究院特普数据中心(湛江),广东 湛江 524057
4.中石化绿源地热能开发有限公司,河北 保定 071800
Comparative analysis of stereo and planar sources for slope breaks
CHEN Feng-Ying1,2(), WANG Xiang-Chun2, SUN Jian3, LI Can-Ping1, REN Xiao-Qing4
1. School of Electronics and Information Engineering,Guangdong Ocean University,Zhanjiang 524088,China
2. School of Geophysics and Information Technology,China University of Geosciences (Beijing),Beijing 100083,China
3. Data Processing Center(Zhanjiang),Geophysical Research Institute,Geophysical Services,China Oilfield Services Limited,Zhanjiang 524057,China
4. Sinopec Green Energy Geothermal Development Co.,Ltd.,Baoding 071800,China
全文: PDF(6069 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

深水区逐步成为海洋油气资源勘探靶区,该区域地质情况复杂,中深层地震成像存在信噪比低、分辨率低的问题,势必影响油气资源的勘探开发。为提高深水区中深层地震数据的品质,从地震数据采集的源头出发,采用立体震源和平面震源在同一采集参数下,对坡折带区同一位置重复进行地震数据采集,经过相同的处理流程后,将二者在子波、炮集频谱、近道频谱、叠加剖面频谱、最终成像等方面进行对比分析。结果表明:立体震源子波在能量强度与受鬼波干扰方面都优于平面震源,且在深水区中深层具有频带更宽的特征,尤其是30~80 Hz频率更丰富,从而可以提高地震剖面的分辨率,改善地震数据的成像。由此可知,与平面震源相比,立体震源在改善深水区中深层地层成像方面具有较好的优势。因而在深水区中深层地质条件复杂的情况下,可采用立体震源采集地震数据,以提高地震数据成像品质。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈凤英
王祥春
孙健
李灿苹
任小庆
关键词 立体震源平面震源坡折带区地震成像    
Abstract

Deep-water areas have gradually become the exploration targets of offshore oil and gas resources.Due to the intricate geological conditions of these areas,seismic imaging of moderately deep reservoirs suffers low signal-to-noise ratios and resolution,inevitably affecting the exploration and exploitation of oil and gas resources.To improve the quality of seismic data of moderately deep reservoirs in deep-water areas,this study first acquired seismic data at the same location in a slope break using stereo and planar sources under the same acquisition parameters.Then,after being processed using the same workflow,the seismic data were subjected to comparative analysis from the perspective of wavelets,shot gather spectra,near-trace spectra,superimposed profile spectra,and final imaging.The results indicate that the wavelets of a stereo source outperformed those of a planar source in terms of energy intensity and ghost reflection interference.Moreover,for moderately deep reservoirs of the deep-water area,a stereo source exhibited broader frequency bands and especially rich frequencies within 30~80 Hz.These features enhanced the resolution of seismic profiles and the imaging quality of seismic data.Thus,compared to planar sources,stereo sources enjoy more advantages in improving seismic imaging of moderately deep reservoirs in deep-water areas.Therefore,stereo sources can be employed to acquire seismic data of moderately deep reservoirs with complex geological conditions in deep-water areas,and the purpose is to improve the imaging quality of seismic data.

Key wordsstereo source    planar source    slope break    seismic imaging
收稿日期: 2023-05-05      修回日期: 2024-01-15      出版日期: 2024-04-20
ZTFLH:  P631.4  
基金资助:2023年广东省海洋经济发展专项(GDNRC[2023]40);深圳市深远海油气勘探技术重点实验室资助项目(ZDSYS20190902093007855);广东省基础与应用基础研究基金(2023A1515012041)
作者简介: 陈凤英(1986-),女,助教,中国地质大学(北京)在读博士,海洋地球物理学专业,主要从事海洋油气资源勘探相关研究工作。Email:chenfy0717@163.com
引用本文:   
陈凤英, 王祥春, 孙健, 李灿苹, 任小庆. 坡折带区立体震源与平面震源资料对比分析[J]. 物探与化探, 2024, 48(2): 461-469.
CHEN Feng-Ying, WANG Xiang-Chun, SUN Jian, LI Can-Ping, REN Xiao-Qing. Comparative analysis of stereo and planar sources for slope breaks. Geophysical and Geochemical Exploration, 2024, 48(2): 461-469.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2024.1160      或      https://www.wutanyuhuatan.com/CN/Y2024/V48/I2/461
子阵 1 2 3 4 5 6 7
容量
/in3
深度
/m
容量
/in3
深度
/m
容量
/in3
深度
/m
容量
/in3
深度
/m
容量
/in3
深度
/m
容量
/in3
深度
/m
容量
/in3
深度
/m
1 40×2 5 40 5 150×2 5 70 5 100×2 5 70 5 150 5
2 40×2 6.5 40 6.5 210 6.5 210 6.5 70×2 8 100 8 150 8
3 40×2 6.5 40 6.5 210 6.5 210 6.5 70×2 8 100 8 150 8
4 40×2 5 40 5 150×2 5 70 5 100×2 5 70 5 150 5
Table 1  立体震源枪震布置情况
震源 平面震源 立体震源
炮间距/m 37.5 37.5
震源沉放深度/m 6.5 6.5
6(立体震源)
气枪容量/in3 3680 3680
空气压力/psi 2000 2000
采样率/ms 1 1
记录长度/s 12 12
截频/Hz 3~400 3~400
道数 576 576
电缆长度/m 7200 7200
道间距/m 12.5 12.5
电缆深度/m 12 12
采集方向/(°) 351 351
最小偏移距/m 205 205
Table 2  两种震源地震数据采集参数
Fig.1  立体震源与平面震源的震源子波对比
a—时域波形;b—频谱
Fig.2  直达波数据及提取的时、频域子波对比
a—立体震源数据;b—平面震源数据;c、d—分别为直达波提取子波和频谱
Fig.3  海底数据及提取的时、频域子波对比
a—立体震源数据;b—平面震源数据;c、d—分别为直达波提取子波和频谱
Fig.4  去干扰波后炮集数据及其频谱
a—浅水区立体震源炮集;b—浅水区平面震源炮集;c—深水区立体震源炮集;d—深水区平面震源炮集;e—浅水浅层频谱;f—浅水深层频谱;g—深水深层频谱;h—深水浅层频谱
Fig.5  近道数据频谱分析
a—近道剖面及A浅水浅层、B浅水深层、C深水深层、D深水浅层位置;b—浅水浅层频谱;c—浅水深层频谱;d—深水深层频谱;e—深水浅层频谱
Fig.6  近道海底数据频谱分析
a—近道剖面;b—立体震源频谱;c—平面震源频谱
Fig.7  偏移前叠加频谱分析
a—叠加剖面及A浅水浅层、B浅水深层、C深水深层、D深水浅层位置;b—浅水浅层频谱;c—浅水深层频谱;d—深水深层频谱;e—深水浅层频谱
Fig.8  立体震源与平面震源在浅水区和深水区的频谱特征
a—偏移剖面;b—位置1频谱;c—位置2频谱
Fig.9  立体震源(a)与平面震源(b)成像剖面及立体震源与平面震源成像频谱特征(c)
[1] Yang H C, Zhang J Z, Wu Z Q, et al. Joint reverse-time imaging condition of seismic towed-streamer and OBN data[J]. IEEE Geoscience and Remote Sensing Letters, 1809, 19:3007305.
[2] Dai W, Huang Y S, Schuster G T. Least-squares reverse time migration of marine data with frequency-selection encoding[J]. Geophysics, 2013, 78(4):S233-S242.
[3] Li Q Q, Fu L Y, Wei W, et al. Stable and high-efficiency attenuation compensation in reverse-time migration using wavefield decomposition algorithm[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(10):1615-1619.
doi: 10.1109/LGRS.8859
[4] 苏欣. 立体延迟气枪阵列的优化设计方法研究[D]. 北京: 中国地质大学(北京), 2020.
[4] Su X. Research on optimization design method of three-dimensional delay air gun array[D]. Beijing: China University of Geosciences(Beijing), 2020.
[5] 夏季, 金星, 蔡辉腾, 等. 大容量气枪震源子波时频特性及其影响因素[J]. 中国地震, 2016, 32(2):249-260.
[5] Xia J, Jin X, Cai H T, et al. The time-frequency characteristic of large volume air-Gun source wavelet and its influencing factors[J]. Earthquake Research in China, 2016, 32(2):249-260.
[6] Cambois G, Long A, Parkes G, et al. Multi-level airgun array:A simple and effective way to enhance the low frequency content of marine seismic data[C]// SEG Technical Program Expanded, 2009.
[7] 全海燕, 陈小宏, 韦秀波, 等. 气枪阵列延迟激发技术探讨[J]. 石油地球物理勘探, 2011, 46(4):513-516.
[7] Quan H Y, Chen X H, Wei X B, et al. Discussion on delayed excitation technology of air Gun array[J]. Oil Geophysical Prospecting, 2011, 46(4):513-516.
[8] 王建花, 李绪宣, 温书亮, 等. 立体阵列气枪震源研究及在南海深水区地震资料采集中的应用[C]// 中国地球物理学会第二十七届年会论文集, 2011:608.
[8] WangJ H, LiX X, WenS L, et al. Research and application of offshore tridimensional air-gun array seismic source in deepwater area of South China Sea[C]// Proceedings of the 27th Annual Meeting of the Chinese Geophysical Society, 2011:608.
[9] 唐松华, 李斌, 张异彪, 等. 立体阵列组合技术在南黄海盆地的应用[J]. 海洋地质前沿, 2013, 29(5):64-70.
[9] Tang S H, Li B, Zhang Y B, et al. Application of tridimensional delayed excitation air-Gun array in the South Yellow Sea Basin[J]. Marine Geology Frontiers, 2013, 29(5):64-70.
[10] 陈浩林, 宁书年, 熊金良, 等. 气枪阵列子波数值模拟[J]. 石油地球物理勘探, 2003, 38(4):363-368.
[10] Chen H L, Ning S N, Xiong J L, et al. Numerical simulation of air-Gun array wavelet[J]. Oil Geophysical Prospecting, 2003, 38(4):363-368.
[11] 杨光亮, 朱元清. 气枪震源深部探测子波模拟[J]. 大地测量与地球动力学, 2008, 28(6):91-95.
[11] Yang G L, Zhu Y Q. Air-Gun wavelet simulation for deep curst exploration[J]. Journal of Geodesy and Geodynamics, 2008, 28(6):91-95.
[12] 杨怀春, 高生军. 海洋地震勘探中空气枪震源激发特性研究[J]. 石油物探, 2004, 43(4):323-326.
[12] Yang H C, Gao S J. The signatures of seismic wavelet excited by air guns in marine seismic survey[J]. Geophysical Prospecting for Petroleum, 2004, 43(4):323-326.
[13] 李绪宣, 温书亮, 顾汉明, 等. 海上气枪阵列震源子波数值模拟研究[J]. 中国海上油气, 2009, 21(4):215-220.
[13] Li X X, Wen S L, Gu H M, et al. A numerical simulation of wavelets from offshore air-Gun array seismic source[J]. China Offshore Oil and Gas, 2009, 21(4):215-220.
[14] 王雷, 刘怀山, 丁西凯. 立体延时气枪震源子波模拟[C]// 第十四届国家安全(军事)地球物理学术研讨会论文集, 2018:238-242.
[14] Wang L, Liu H S, Ding X K. Stereo-delay air gun source wavelet simulation[C]// Proceedings of the 14th National Security(Military) Geophysical Symposium, 2018:238-242.
[15] 盖永浩, 李列, 欧阳敏. 海洋宽频地震采集系统及其应用[J]. 断块油气田, 2020, 27(2):198-201.
[15] Gai Y H, Li L, Ouyang M. Marine broadband seismic acquisition system and its application[J]. Fault-Block Oil & Gas Field, 2020, 27(2):198-201.
[16] 李玉剑, 张异彪, 刘璐晨, 等. 南黄海中-古生界地震勘探震源设计及其应用[J]. 海洋地质与第四纪地质, 2019, 39(2):200-212.
[16] Li Y J, Zhang Y B, Liu L C, et al. Seismic source specially designed for the Meso-Paleozoic strata and its applicaton to South Yellow Sea[J]. Marine Geology & Quaternary Geology, 2019, 39(2):200-212.
[17] 杨宸, 徐德卫, 刘怀山. 海洋地震立体观测震源特性分析[C]// 国家安全地球物理丛书(十七)——生态环境与地球物理, 2021:75-81.
[17] Yang C, Xu D W, Liu H S. Analysis of Source Characteristics of Marine Seismic Stereoscopic Observation[C]//. National Security Geophysics Series (XVII):Ecological Environment and Geophysics, 2021:75-81.
[18] 任婷, 彭海龙, 覃殿明, 等. 深水区直达波子波提取气泡效应压制技术[J]. 石油地球物理勘探, 2018, 53(2):243-250,219.
[18] Ren T, Peng H L, Qin D M, et al. De-bubble based on wavelet extraction from direct wave in deep water[J]. Oil Geophysical Prospecting, 2018, 53(2):243-250,219.
[19] 王守君, 王征. 海上地震资料零相位化处理技术研究[J]. 石油物探, 2012, 51(4):402-407.
[19] Wang S J, Wang Z. Zero-phase processing and its application on marine seismic data[J]. Geophysical Prospecting for Petroleum, 2012, 51(4):402-407.
[20] 黄平, 路中侃. 地震频谱分析在气水分布研究中的应用[J]. 石油物探, 1995, 34(2):71-75,93.
[20] Huang P, Lu Z K. Application of seismic spectral analysis to study water-gas distribution[J]. Geophysical Prospecting for Petroleum, 1995, 34(2):71-75,93.
[1] 张荣忠, 曹玉玲, 郭良川. 地震虚源法技术[J]. 物探与化探, 2012, 36(2): 208-213.
[2] 姜大建, 宁俊瑞, 张改兰, 李燕. 非对称走时克希霍夫叠前时间偏移方法在塔河地区的应用[J]. 物探与化探, 2011, 35(5): 643-647.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com