Please wait a minute...
E-mail Alert Rss
 
物探与化探  2024, Vol. 48 Issue (2): 451-460    DOI: 10.11720/wtyht.2024.1150
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
基于PARDISO直接求解器的三维自然电位正反演
苏朝阳1(), 沈金松1(), 罗辉2
1.中国石油大学(北京) 地球物理学院,北京 102249
2.中国石化西北油田分公司生产运行管理部,新疆 乌鲁木齐 842100
3D forward and inverse modeling of self-potential data based on the PARDISO direct solver
SU Zhao-Yang1(), SHEN Jin-Song1(), LUO Hui2
1.College of Geophysics, China University of Petroleum (Beijing), Beijing 102249, China
2. Production Operation Management Department,SINOPEC Northwest Oil Field Company, Urumqi 842100, China
全文: PDF(6530 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

近年来自然电位法在海底硫化物资源的勘探和评价中发挥了重要作用。本文开展的是基于PARDISO直接求解器的3D自然电位正反演算法研究。首先,利用有限体积法离散自然电位控制方程,采用PARDISO直接求解器提高正演计算的效率,通过数值解与解析解对比,验证了正演算法的可靠性。其次,在3D反演算法中考虑了地形因素,同时将最小支撑约束与深度加权加入目标泛函中,理论模型数据的反演结果很好地恢复了矿体的结构。最后,利用该算法对室内沙箱实验获得的自然电位数据进行反演,结果显示得出的电流密度异常与金属棒的位置基本一致。因此,本文提出的反演算法在未来大规模自然电位数据反演中具有重要作用。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
苏朝阳
沈金松
罗辉
关键词 自然电位法3D聚焦反演PARDISO直接求解器    
Abstract

In recent years, the self-potential method has played a significant role in the exploration and evaluation of seafloor massive sulfide resources. This study explored the 3D forward and inverse modeling algorithms for self-potential based on the PARDISO direct solver. First, the finite volume method was employed to discretize the self-potential control equation, and the PARDISO direct solver was utilized to improve the forward modeling efficiency. The reliability of the forward modeling algorithm was verified by comparing the numerical solution with the analytical solution. The 3D inverse modeling algorithm considered the topographic factor and incorporated the minimum support constraint and depth weighting into the objective function. The inversion results of theoretical model data effectively reconstructed the ore body structure. Finally, the self-potential data obtained from indoor sandbox experiments were inverted using the inverse modeling algorithm, obtaining that the current density anomaly was roughly consistent with the position of the metal bar. Therefore, the inverse modeling algorithm proposed in this study holds critical significance for subsequent inversion of large-scale spontaneous potential data.

Key wordsself-potential method    3D focusing inversion    PARDISO direct solver
收稿日期: 2023-04-10      修回日期: 2023-05-22      出版日期: 2024-04-20
ZTFLH:  P631  
基金资助:国家自然科学基金项目(42074217)
通讯作者: 沈金松
作者简介: 苏朝阳(1995-),男,博士研究生,主要从事海洋瞬变电磁和自然电位方法及应用研究工作。Email:2019310419@student.cup.edu.cn
引用本文:   
苏朝阳, 沈金松, 罗辉. 基于PARDISO直接求解器的三维自然电位正反演[J]. 物探与化探, 2024, 48(2): 451-460.
SU Zhao-Yang, SHEN Jin-Song, LUO Hui. 3D forward and inverse modeling of self-potential data based on the PARDISO direct solver. Geophysical and Geochemical Exploration, 2024, 48(2): 451-460.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2024.1150      或      https://www.wutanyuhuatan.com/CN/Y2024/V48/I2/451
模型尺寸 运算时间/s
最小二乘
迭代求解器
共轭梯度
迭代求解器
PARDISO
直接求解器
20 × 20 × 20 0.15 0.04 0.005
40 × 40 × 40 1.23 0.15 0.04
60 × 60 × 60 5.80 0.89 0.25
Table 1  直接求解器与迭代求解器运行速度对比
Fig.1  有限体积法的正演响应与解析解对比
a—网格剖分示意;b—y=0 m切片(2D网格);c—数值解与解析解;d—相对误差
Fig.2  3D正演模型及自然电位响应结果
a—模型及切片位置;b—接收器采集到的平面电场分布;c—剖面AA’是位于x = 0 m的切片;d—剖面BB’是位于y = -75 m的切片;e—测线AA’上的自然电位分布;f—测线BB’上的自然电位分布
Fig.3  3D自然电位反演结果及切片
a—反演结果及切片位置;b—位于z=0 m处的切面;c—剖面AA’的反演结果;d—剖面BB’的反演结果
Fig.4  3D自然电位模型及反演结果
a—模型;b—反演结果;c—模型切片(深度z=-65 m的切片);d—反演结果(深度z=-65 m处的切片);e—模型剖面(y=-65 m);f—反演结果(y=-65 m)
Fig.5  起伏地形条件下的3D自然电位模型及反演结果
a—3D模型;b—反演结果;c—模型水平切片(z=-30m);d—反演结果水平切片(z=-30 m);e—模型垂直剖面(x = 0 m);f—反演结果剖面(x =0 m处)
Fig.6  正演的观测数据与预测数据
a—正演数据;b—反演得到的预测数据;c—正演数据与观测数据之间的误差
Fig.7  沙箱实验示意图
Fig.8  氧化还原反应发生后的自然电位分布等值线
Fig.9  沙箱实验数据的3D反演结果
Fig.10  沙箱试验的自然电位数据与反演的预测数据
a—沙箱试验数据;b—反演得到的预测数据;c—沙箱试验数据与观测数据之间的误差
[1] Jardani A, Revil A, Bolève A, et al. Three-dimensional inversion of self-potential data used to constrain the pattern of groundwater flow in geothermal fields[J]. Journal of Geophysical Research:Solid Earth, 2008, 113(B9):B09204.
[2] Fox R W. On the electro-magnetic properties of metalliferous veins in the mines of cornwall[J]. Philosophical Transactions of the Royal Society of London, 1830, 120:399-414.
doi: 10.1098/rstl.1830.0027
[3] Corwin R F, Hoover D B. The self-potential method in geothermal exploration[J]. Geophysics, 1979, 44(2):226-245.
doi: 10.1190/1.1440964
[4] Patella D. Self-potential global tomography including topographic effects[J]. Geophysical Prospecting, 1997, 45(5):843-863.
doi: 10.1046/j.1365-2478.1997.570296.x
[5] 仇勇海. 金属矿自然电位的空间分布及其应用[J]. 物探与化探, 1985, 9(4):268-273.
[5] Qiu Y H. Spatial distribution of spontaneous potential of metallic orebody and its application[J]. Geophysical and Geochemical Exploration, 1985, 9(4):268-273.
[6] Revil A, Ehouarne L, Thyreault E. Tomography of self-potential anomalies of electrochemical nature[J]. Geophysical Research Letters, 2001, 28(23):4363-4366.
doi: 10.1029/2001GL013631
[7] Kawada Y, Kasaya T. Self-potential mapping using an autonomous underwater vehicle for the Sunrise deposit,Izu-Ogasawara arc,southern Japan[J]. Earth,Planets and Space, 2018, 70(1):142.
doi: 10.1186/s40623-018-0913-6
[8] Biswas A, Sharma S P. Interpretation of self-potential anomaly over 2-D inclined thick sheet structures and analysis of uncertainty using very fast simulated annealing global optimization[J]. Acta Geodaetica et Geophysica, 2017, 52(4):439-455.
doi: 10.1007/s40328-016-0176-2
[9] 朱肖雄, 崔益安, 陈志学. 基于最小二乘正则化的自然电场场源反演成像[J]. 地球物理学进展, 2016, 31(5):2313-2318.
[9] Zhu X X, Cui Y A, Chen Z X. Inversion for self-potential sources based on the least squares regularization[J]. Progress in Geophysics, 2016, 31(5):2313-2318.
[10] Mendonca C A. Forward and inverse self-potential modeling in mineral exploration[J]. Geophysics, 2008, 73(1):F33-F43.
[11] Miller C A, Kang S G, Fournier D, et al. Distribution of vapor and condensate in a hydrothermal system:Insights from self-potential inversion at mount Tongariro,new zealand[J]. Geophysical Research Letters, 2018, 45(16):8190-8198.
doi: 10.1029/2018GL078780
[12] 王文义. 海底多金属硫化物自然电位响应机理及探测方法研究[D]. 北京: 中国石油大学(北京), 2019.
[12] Wang W Y. Study on the mechanism of self-potential and detection method of seafloor polymetallic sulfide deposits[D]. Beijing: China University of Petroleum (Beijing), 2019.
[13] Guo Y J, Cui Y A, Xie J, et al. Seepage detection in earth-filled dam from self-potential and electrical resistivity tomography[J]. Engineering Geology, 2022, 306:106750.
doi: 10.1016/j.enggeo.2022.106750
[14] Rittgers J B, Revil A, Karaoulis M, et al. Self-potential signals generated by the corrosion of buried metallic objects with application to contaminant plumes[J]. Geophysics, 2013, 78(5):EN65-EN82.
[15] Cockett R, Heagy L J, Oldenburg D W. Pixels and their neighbors:Finite volume[J]. The Leading Edge, 2016, 35(8):703-706.
doi: 10.1190/tle35080703.1
[16] Haber E. Computational methods in geophysical electromagnetics[M]. Philadelphia: Society for Industrial and Applied Mathematics, 2014.
[17] Puzyrev V, Koric S, Wilkin S. Evaluation of parallel direct sparse linear solvers in electromagnetic geophysical problems[J]. Computers & Geosciences, 2016, 89:79-87.
doi: 10.1016/j.cageo.2016.01.009
[18] Schenk O, Gärtner K. Two-level dynamic scheduling in PARDISO:Improved scalability on shared memory multiprocessing systems[J]. Parallel Computing, 2002, 28(2):187-197.
doi: 10.1016/S0167-8191(01)00135-1
[19] Bollhöfer M, Eftekhari A, Scheidegger S, et al. Large-scale sparse inverse covariance matrix estimation[J]. SIAM Journal on Scientific Computing, 2019, 41(1):A380-A401.
[20] Barbara. Add PARDISO lib to Matlab in Windows 10, 2023,https://www.mathworks.com/matlabcentral/fileexchange/119053-add-pardiso-lib-to-matlab-in-windows-10
[21] Revil A, Jardani A. The self-potential method:Theory and applications in environmental geosciences[M]. Cambridge: Cambridge University Press, 2013.
[22] Portniaguine O, Zhdanov M S. 3D magnetic inversion with data compression and image focusing[J]. Geophysics, 2002, 67(5):1532.
doi: 10.1190/1.1512749
[23] Nocedal J, Wright S J, Numerical optimization[M]. New York: Springer New York,1999.
[24] Golub G H, von Matt U.Generalized cross-validation for large-scale problems[J]. Journal of Computational and Graphical Statistics, 1997, 6(1):1.
[25] Mao D Q, Revil A. Induced polarization response of porous media with metallic particles—Part 3:A new approach to time-domain induced polarization tomography[J]. Geophysics, 2016, 81(4):D345-D357.
[26] Zhdanov M S. Geophysical inverse theory and regularization problems[M]. Amsterdam:Elserier, 2002.
[27] Li Y G, Oldenburg D W. 3D inversion of magnetic data[J]. Geophysics, 1996, 61(2):394-408.
doi: 10.1190/1.1443968
[28] 侯振隆. 重力全张量梯度数据的并行反演算法研究及应用[D]. 长春: 吉林大学, 2016.
[28] Hou Z L. Research and application of the parallel inversion algorithms based on the full tensor gravity gradiometry data[D]. Changchun: Jilin University, 2016.
[29] Zhdanov M, Tolstaya E. Minimum support nonlinear parametrization in the solution of a 3D magnetotelluric inverse problem[J]. Inverse Problems, 2004, 20(3):937-952.
doi: 10.1088/0266-5611/20/3/017
[30] 汪轩. 基于先验信息约束的电磁和地震结构耦合联合反演研究[D]. 北京: 中国石油大学(北京), 2020.
[30] Wang X. Structural-coupled Joint Inversion of Electromagnetic and Seismic Data Based on a priori Information Constraint[D]. Beijing: China University of Petroleum (Beijing), 2020.
[1] 陈靖, 王万银, 温少光, 郭文波, 雷小鹏, 魏晓航. 印尼桑加卢比铅锌矿区电磁异常特征及找矿方向[J]. 物探与化探, 2015, 39(6): 1305-1311.
[2] 李晓春, 李喜平, 徐广明. 自然电位法在煤田火区勘察中的应用[J]. 物探与化探, 2012, 36(3): 382-385.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com