E-mail Alert Rss
 

物探与化探, 2024, 48(2): 451-460 doi: 10.11720/wtyht.2024.1150

方法研究·信息处理·仪器研制

基于PARDISO直接求解器的三维自然电位正反演

苏朝阳,1, 沈金松,1, 罗辉2

1.中国石油大学(北京) 地球物理学院,北京 102249

2.中国石化西北油田分公司生产运行管理部,新疆 乌鲁木齐 842100

3D forward and inverse modeling of self-potential data based on the PARDISO direct solver

SU Zhao-Yang,1, SHEN Jin-Song,1, LUO Hui2

1.College of Geophysics, China University of Petroleum (Beijing), Beijing 102249, China

2. Production Operation Management Department,SINOPEC Northwest Oil Field Company, Urumqi 842100, China

通讯作者: 沈金松(1964-),男,教授,主要从事地球物理测井和电磁法理论与应用研究工作。Email:shenjinsongcup@163.com

责任编辑: 王萌

收稿日期: 2023-04-10   修回日期: 2023-05-22  

基金资助: 国家自然科学基金项目(42074217)

Received: 2023-04-10   Revised: 2023-05-22  

作者简介 About authors

苏朝阳(1995-),男,博士研究生,主要从事海洋瞬变电磁和自然电位方法及应用研究工作。Email:2019310419@student.cup.edu.cn

摘要

近年来自然电位法在海底硫化物资源的勘探和评价中发挥了重要作用。本文开展的是基于PARDISO直接求解器的3D自然电位正反演算法研究。首先,利用有限体积法离散自然电位控制方程,采用PARDISO直接求解器提高正演计算的效率,通过数值解与解析解对比,验证了正演算法的可靠性。其次,在3D反演算法中考虑了地形因素,同时将最小支撑约束与深度加权加入目标泛函中,理论模型数据的反演结果很好地恢复了矿体的结构。最后,利用该算法对室内沙箱实验获得的自然电位数据进行反演,结果显示得出的电流密度异常与金属棒的位置基本一致。因此,本文提出的反演算法在未来大规模自然电位数据反演中具有重要作用。

关键词: 自然电位法; 3D聚焦反演; PARDISO直接求解器

Abstract

In recent years, the self-potential method has played a significant role in the exploration and evaluation of seafloor massive sulfide resources. This study explored the 3D forward and inverse modeling algorithms for self-potential based on the PARDISO direct solver. First, the finite volume method was employed to discretize the self-potential control equation, and the PARDISO direct solver was utilized to improve the forward modeling efficiency. The reliability of the forward modeling algorithm was verified by comparing the numerical solution with the analytical solution. The 3D inverse modeling algorithm considered the topographic factor and incorporated the minimum support constraint and depth weighting into the objective function. The inversion results of theoretical model data effectively reconstructed the ore body structure. Finally, the self-potential data obtained from indoor sandbox experiments were inverted using the inverse modeling algorithm, obtaining that the current density anomaly was roughly consistent with the position of the metal bar. Therefore, the inverse modeling algorithm proposed in this study holds critical significance for subsequent inversion of large-scale spontaneous potential data.

Keywords: self-potential method; 3D focusing inversion; PARDISO direct solver

PDF (6530KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

苏朝阳, 沈金松, 罗辉. 基于PARDISO直接求解器的三维自然电位正反演[J]. 物探与化探, 2024, 48(2): 451-460 doi:10.11720/wtyht.2024.1150

SU Zhao-Yang, SHEN Jin-Song, LUO Hui. 3D forward and inverse modeling of self-potential data based on the PARDISO direct solver[J]. Geophysical and Geochemical Exploration, 2024, 48(2): 451-460 doi:10.11720/wtyht.2024.1150

0 引言

自然电位法是一种历史悠久的被动源探测方法,通常引起地表或者海底局部自然电位异常的源大致分为4类:地下水流动产生的流动电势、金属离子浓度差异引起的扩散电势、温度差异相关的温电效应产生的电势、与金属矿体和垃圾渗漏相关的氧化还原反应产生的电势[1]。近年来,自然电位法作为一种被动源探测方法在水文地质以及矿产勘查中发挥了重要作用。

1830年,Fox[2]就将自然电位法用于陆上的硫化物矿床调查。和陆上一样,海底多金属硫化物矿体上下部分发生氧化还原反应也会引起局部自然电位异常,20世纪70年代首次利用自然电位法进行海底多金属硫化物勘探[3]。由于海洋中人为的电磁噪声比陆地上少,因此利用电场传感器来探测海洋环境中的热液矿床非常有效[2]。近年来,海洋自然电位法被俄罗斯、日本、德国、中国等诸多国家用来寻找多金属硫化物。为了获得海底矿床的空间分布,需要对采集的自然电位数据进行反演。Patella[4]提出了概率密度成像法,获得了地下引起自然电位异常的源的位置,但该方法仅适用于单极电荷聚集的情况,像多金属硫化物矿体这种由氧化还原反应引起的自然电位异常,通常形成的是偶极源[5]。因此,Revil等[6]将概率密度成像拓展到偶极源情况。Kawada等[7]利用概率密度法获得了冲绳海槽lzena热液区可能存在电偶极子源。Biswas等[8]提出了模拟退火算法,用于复杂厚板状模型的自然电场数据的解释。基于有限元法的正演模拟,朱肖雄等[9]利用最小二乘正则化对自然电场场源进行了反演。Jardani等[1]通过对自然电位数据进行3D反演,获得了源电流密度的分布,进而确定地下流体的流动状态。Mendonca[10]使用格林公式来简化地电模型,同时考虑了围岩电导率、氧化还原电位梯度以及矿体的电导率对自然电位信号的影响,最后通过电荷守恒约束反演获得了源电流密度分布,并在秘鲁金矿的探测中进行了成功应用。Miller等[11]利用SimPEG开发的自然电位模块,3D反演获得了新西兰汤加里罗火山下的气、液分布,同时在模型中施加了范数约束。王文义[12]利用有限差分法实现了3D自然电位反演,并且在西南部印度洋脊玉皇热液区进行了应用。Guo等[13]利用自然电位法和直流电阻率法重建了大坝渗漏路径。

目前,自然电位法广泛用于硫化物矿体识别以及平面圈定中。为了利用自然电位数据反演获得矿体的空间结构,本文首先利用有限体积法离散了自然电位控制方程,通过数值解与解析解对比,验证了正演算法的可靠性;在反演算法中,将最小支撑约束与深度加权加入目标泛函中,通过对理论模型以及沙箱实验数据的反演验证了反演算法的可靠性。

1 3D自然电位正演模拟

1.1 自然电位控制方程

海底源电流密度Js与产生的氧化还原电位Eh之间的线性关系为[14]:

Js=-σ0Eh,

其中:σ0表示氧化还原反应梯度带部分的电导率分布,S/m。总的电流密度J包含传导电流密度和源电流密度,

J=σE+Js,

其中:σ表示海底以下的电导率分布,S/m;E表示准静态下的电场分布。根据低频条件下的总的电流密度满足·J=0,结合E=-φ,式(2)可以表示为

·σφ=·Js=qv,

其中:φ表示观测到的自然电位数据,V;Js表示引起自然电位异常的源的面电流密度,A/m2;qv表示源的体电流密度,A/m3;式(3)即为自然电位法的控制方程。为了获得地下不同异常体的自然电位响应,需要对自然电位控制方程进行离散,本文利用有限体积法对自然电位控制方程进行离散[15]。采用正交网格剖分,自然电位φ和电导率σ和体电流密度qv定义在网格中心,面电流密度Js定义在面上,离散形式如下:

[diag(v)DMσf-1DTdiag(v)]Aφ}u=qvq,

其中:A=diag(v)DMσf-1DTdiag(v),为大型稀疏矩阵,Mσf-1为内积矩阵,D为散度矩阵,v为网格单元的体积[16]

1.2 PARDISO 直接求解器的安装与求解

通常地球物理正演的控制方程可以简单表示为A(m)u=q(如式(4))。这些大型稀疏方程组可以使用开源线性迭代求解器或者直接求解器进行求解,应用比较多的直接求解器有MUMPS和PARDISO求解器。Puzyrev 等[17]对比了两种直接求解器,MUMPS计算速度略快于PARDISO,但所需的计算机内存更大。考虑到需在PC机上运行,本文选择了PARDISO直接求解器。本文对比了迭代求解器和PARDISO直接求解器[18-19]的运算速度(表1),结果显示采用直接求解器的正演计算速度明显比迭代求解器快,但是随着模型尺度越大,求解需要的内存也越大,使得计算速度下降,但仍然优于迭代求解器。使用的编程语言是MATLAB,计算机装载Intel Core i7-7820HQ 2.90 GHz CPU 和64位Windows。Windows环境下的MATLAB调用PARDISO求解器可以参考文献[20]。

表1   直接求解器与迭代求解器运行速度对比

Table 1  Comparison between direct solver and iterative solver

模型尺寸运算时间/s
最小二乘
迭代求解器
共轭梯度
迭代求解器
PARDISO
直接求解器
20 × 20 × 200.150.040.005
40 × 40 × 401.230.150.04
60 × 60 × 605.800.890.25

新窗口打开| 下载CSV


1.3 数值解与解析解对比

为了验证正演算法的可靠性,我们设计了一个100 × 100 ×100的3D网格(图 1a),整个空间为均匀电导率分布(1 S/m)。首先对均匀空间进行剖分,设置核心网格以及逐渐增大的不均匀网格来模拟无穷远,其中核心网格数目为74 ×74 ×74=405 224个,网格体积为1 m×1 m×1 m。设置Dirichlet边界条件,边界电势φ=0。垂直电偶极子源的中心坐标为(50,50,50),偶极距为2 m,并且沿着偶极子方向设置70个接收点(图 1b)。解析法使用公式φ=q4πεr计算,有限体积法和解析法获得的电位值如图 1c所示,从图中可以看出两种方法获得的电位分布具有很好的一致性,同时相对误差(解析解与数值解的差与解析解的比值的绝对值)显示(图1d),除了在源附近的相对误差较大(外),其他地方的相对误差在3%左右。因此,文本利用有限体积法进行自然电位正演模拟算法是可靠的。

图1

图1   有限体积法的正演响应与解析解对比

a—网格剖分示意;b—y=0 m切片(2D网格);c—数值解与解析解;d—相对误差

Fig.1   Comparison of forward response of finite volume method and analytic solutions

a—schematic diagram of mesh; b—the slice at y = 0 m (2D mesh); c—numerical and analytical solutions; d—relative error


1.4 海底多金属硫化物的自然电位响应特征

为了获得海底硫化物矿体的3D响应特征,建立如图 2a所示的模型。首先将地下介质剖分为40 × 40 × 30的网格,核心区域中网格的体积为20 m× 20 m × 10 m,用边界设置间距越来越大的变网格来模拟无穷远,xy方向剖分范围为-214~214 m,z方向为-164~164 m,深度方向z = -100 m处为海底分界面(图 2c中的白色虚线位置),观测面距离海底10 m(深度方向z=-100 m),观测点数为13×13=169个(图 2a中的白色三角形为采样点)。模型空间中上半部分海水的电导率设置为3.2 S/m,海底以下围岩的电导率均为0.1 S/m。在海底以下空间中存在两个聚集着负电荷的长方体多金属硫化物块体,两个异常体的大小及体积一样,但是深度不一致。异常体在x方向的范围分别是-100 ~-40 m、40~140 m,在y方向的范围均为-30~30 m,z方向的深度范围分别是-80~-10 m、-60~20 m。两个多金属硫化物块体等效的电流密度均为1×10-3 A/m3,即每个小立方体的电流均为-1 A。

图2

图2   3D正演模型及自然电位响应结果

a—模型及切片位置;b—接收器采集到的平面电场分布;c—剖面AA’是位于x = 0 m的切片;d—剖面BB’是位于y = -75 m的切片;e—测线AA’上的自然电位分布;f—测线BB’上的自然电位分布

Fig.2   3D model and forward response results

a—model and slice position; b—plane electric field distribution collected by receiver; c—section AA' is the slice at x = 0 m; d—BB' Slices are slices located at y = -75 m; e—spontaneous potential distribution on line AA'; f—spontaneous potential distribution on line BB'


图 2中的正演结果可以看出,硫化物矿体由于氧化还原反应会在海底产生负的自然电位异常,且矿体正上方的负自然电位异常最强,产生的电位随着距离逐渐衰减(图 2b)。埋藏较浅的多金属硫化物产生的自然电位异常幅值大约为-0.25 V,埋藏较深的多金属硫化物自然电位异常幅值大约为-0.18V(图 2ef),因此,埋藏较浅的硫化物矿体通常比埋藏较深的矿体产生的自然电位异常幅值大。因此,利用平面上采集的自然电位数据可以初步判定海底硫化物矿体的相对大小及埋藏深度。

2 3D自然电位反演方法

2.1 聚焦反演

为了获得海底硫化物矿体的深部结构信息,需要对观测到的自然电位数据进行3D反演。由于仅在海底采集到有限的自然电位数据,因此反演是病态的。为获得正确的反演结果,使用正则化理论来建立自然电位反演的Tikhonov目标函数[21-22]:

φ(m)=φd(m)+αφm(m)=Wd(d-dobs)22+αWm(m-m0)22,

其中:等式右端第一项表示数据拟合项,第二项表示模型约束项;正则化因子α用来平衡模型约束项和数据拟合项在目标泛函中的权重[21],可以使用L曲线准则、广义交叉验证以及降温策略来确定合适的α[23-24];Wd为数据加权对角矩阵,d为正演得到的自然电位数据;dobs为实际观测的自然电位数据,Wm为模型加权矩阵;m为电流密度模型向量;m0为参考模型。

为了突出深部异常,需要在目标泛函中引入深度加权函数,深度加权矩阵Wz定义为[25-26]:

Wz=diag(i=1NJij2)14, j=1,...,M,

其中:Jij为灵敏度矩阵的元素(第i个观测数据对第j个模型参数的偏导数),M为模型向量中元素的个数,N为观测数据的个数。式(6)是基于灵敏度矩阵构建的深度加权矩阵,同时也可以参考网格的深度坐标构建深度加权矩阵[27]

通常2范数约束会使得反演得到的电流密度结构光滑,异常体的边界信息不够准确。因此,文中引入最小支撑稳定函数约束,使得反演结果在空间上更聚焦,更准确地反映海底硫化物空间分布。最小支撑稳定函数的定义如下[28]:

sMS(m)=j=1Mmj2mj2+β2,

其中:mj为模型向量m中的第j个元素;β为聚焦因子,通常取较小的正数。β值太小会使得sMS接近于单位阵,而值太大的话则无法聚焦。可以利用和正则化参数类似的L曲线寻找最合适的β[29-30]。将式(7)的深度加权与式(6)的最小支撑稳定泛函带入模型约束项中,最后目标泛函式(5)中模型约束项的加权矩阵Wm可以表示成如下:

Wm=j=1Mwj2mj2+β2,

其中:wj为深度加权距阵Wz主对角线上的第i个元素。因此,带深度加权的自然电位聚焦反演的目标泛函表示为:

φ(m)=JWm-1Wmm-dobs22+αWmm-Wmm022,

可以将上式简写为

φ(m)=JWmW-dobs22+αmW-m0W22,

其中:新的灵敏度矩阵JW=JW(m)。加权后的模型参数为mW=Wm-1m,加权后的参考模型设为m0W=Wm-1m0

2.2 灵敏度矩阵计算

灵敏度矩阵为观测数据对模型的偏导数,通常反演中的灵敏度矩阵可以统一表示为[16]

J=-PA(m)-1G(u,m),

由于自然电位反演是反演源的问题,所以矩阵Aq无关,根据自然电位控制方程(4),矩阵G(u,q)=q(Au-q)=-I,因此,自然电位反演的灵敏度为

J=PA-1,

其中:矩阵P为插值矩阵,将网格中心处正演计算出来的电位值插值到设置的接收器位置。由于矩阵A为大型稀疏矩阵,因此A-1不易求解。本文采用伴随正演计算灵敏度矩阵,因为3D反演中模型的个数远远大于接收器的个数,因此本文计算灵敏度矩阵的转置JT:

JT=A-TPT,

由于矩阵PT的每一列仅有一个元素“1”,因此,可以采用并行正演计算矩阵JT的每列。由于PARDISO求解器提高了正演效率,因此灵敏度矩阵的求解效率也很高。在进行反演之前要进行灵敏度矩阵测试。Haber[16]介绍了两种测试方法,本文用到的是伴随测试法。理论上矩阵JTJ满足

wT(Jv)=vT(JTw),

其中:向量v(M×1)和向量w(Nd×Nt,1)可以为随机矩阵。理论上,d=wT(Jv)-vT(JTw)应为0,但是由于灵敏度矩阵计算的时候采用线性求解,因此,当计算出来的d是一个非常小的数时(通常小于10-8),表明灵敏度矩阵计算的正确[16]

3 合成模型

3.1 模型一

为了验证反演算法的可靠性,对图 2中3D模型的正演数据进行反演。反演中采用与正演相同的离散网格,设置迭代初始的正则化因子α为6×10-3,最小支撑稳定函数约束中聚焦因子β设为0.032。初始模型及参考模型的电流密度值为0 A,同时对反演的电流密度值范围约束为[-10-3,0] A/m3,给定迭代终止的误差为1e-8或达到最大迭代次数设为100次。

3D反演结果如图 3所示。从反演得到的切片数据来看: 反演结果在平面上的分布与理论模型基本一致,同时异常体的位置反演的也比较准确,验证了聚焦反演在深度加权矩阵约束下能够较好地展示出深部异常体的电流密度分布情况。但相较于浅部异常体来说,深部异常体的下边界识别的不太清楚。同时由于聚焦反演的聚焦特性,反演得到的结果在体积上相对于理论模型会稍小一些。但反演得到的每个网格小立方体的电流最大值都达到了-1 A,和理论模型电流值较为吻合。

图3

图3   3D自然电位反演结果及切片

a—反演结果及切片位置;b—位于z=0 m处的切面;c—剖面AA’的反演结果;d—剖面BB’的反演结果

Fig.3   3D self-potential inversion results and slices

a—inversion result and slice position; b—slice at z=0 m; c—inversion results of profile AA'; d—inversion of profile BB' performance result


3.2 模型二

为了进一步验证算法的可靠性,设计了如图 4所示的模型,采用与模型一相同的观测系统和网格尺寸,4个大小为60 m×60 m×60 m的矿体分布在海底10 m以下,电流密度值为-10-3 mA/m3,异常体在x水平方向间距40 m,在y方向间距80 m,设置迭代初始的正则化因子α为8e-5,最小支撑稳定函数约束中聚焦因子β设为0.03。3D模型和反演结果如图 4ab所示,从z=-65 m的水平切面上来看,矿体的横向边界清晰(图 4cd),深度加权基本恢复了矿体的位置(图 4ef)。

图4

图4   3D自然电位模型及反演结果

a—模型;b—反演结果;c—模型切片(深度z=-65 m的切片);d—反演结果(深度z=-65 m处的切片);e—模型剖面(y=-65 m);f—反演结果(y=-65 m)

Fig.4   3D self-potential model and inversion results

a—inversion result and slice position; b—inversion result; c—model slice(at z=-65 m);d—inversion results of profile (slice at z = -65 m); e—model (y=-65 m); f—inversion result(y=-65 m)


3.3 模型三

为了更好地模拟真实的海底环境,设计了起伏地形条件下的3D模型(图 5),采用与前面相同的观测系统和网格尺寸,60 m×100 m×60 m的矿体分布在丘体下方,电流密度值为-10-3 mA/m3,观测系统以及反演中的正则化因子与聚焦因子选择与模型二相同。3D模型和反演结果如图 5ab所示,由于仅存在一个单独的异常体,从水平和垂直切片上来看,矿体的边界清晰(图 5cd),深度加权恢复了矿体的位置(图 5ef)。因此,反演结果进一步验证了聚焦反演方法在反演海底多金属矿体的深部结构信息的可靠性。

图5

图5   起伏地形条件下的3D自然电位模型及反演结果

a—3D模型;b—反演结果;c—模型水平切片(z=-30m);d—反演结果水平切片(z=-30 m);e—模型垂直剖面(x = 0 m);f—反演结果剖面(x =0 m处)

Fig.5   3D self-potential model and inversion results

a—3D model; b—inversion result; c—horizontal slice of model (z=-30 m);d—horizontal slice was recovered by inversion (z=-30 m); e—vertical slice of model (x=0 m); f—vertical slice was recovered by inversion (slice at x=0 m)


图 6a中的正演观测数据可以看出:在异常体的正上方自然电位异常最大,远离异常体自然电位减弱,与图2中观测到的现象一致。计算的正演观测数据与反演得到的预测数据之间的误差很小(图 6c)表明反演得到的电流密度分布很好地恢复了观测数据(图 6b)。

图6

图6   正演的观测数据与预测数据

a—正演数据;b—反演得到的预测数据;c—正演数据与观测数据之间的误差

Fig.6   Observed data and predicted data obtained by inversion

a—observed data obtained by forward modeling; b—predicted data obtained from inversion; c—error between observed data and predicted data


4 沙箱实验

为了验证本文反演算法在实际中的应用效果,最后对实验室内开展沙箱实验获得的自然电位数据进行了反演。图 7所示的沙箱长0.9 m、宽0.45 m、高0.32 m。实验开始前,粒径相同的石英砂混合水溶液填满沙箱,模拟矿体附近的围岩,将金属棒埋在沙箱中间模拟硫化物矿体。实验过程中不断加水来控制潜水面的深度不变,确保氧化还原反应正常进行。实验中定期采集表面的2D自然电位数据以及矿体附近的3D自然电位数据、pH和Eh数据,观测氧化还原反应过程中引起的自然电位和化学数据变化。

图7

图7   沙箱实验示意图

Fig.7   Schematic diagram of sandbox experiment


室温条件下氧化还原反应发生200多天后,电极在沙箱表面采集到的2D自然电位数据如图 8所示,可以看到在矿体的上方出现了明显的自然电位负异常。从图8的等值线图中可以看到,自然电位最大负异常略偏离金属棒,这可能是由于为了加速氧化还原反应,注酸引起在金属棒周围的氧化还原反映存在差异。

图8

图8   氧化还原反应发生后的自然电位分布等值线

Fig.8   Contour diagram of self-potential distribution after the occurrence of redox reactions


为了对2D自然电位数据进行3D反演获得沙箱中的电流密度分布,将沙箱剖分成80×40×30=96 000个网格,最小网格尺寸为2 cm,在网格边缘设置5层间尺寸逐渐增大的网格,同时采用第二类边界条件。反演中聚焦因子设置为10-5, 正则化因子采用降温策略,初始值设置为10-2, 每迭代两次减小5倍。设置最大迭代次数为10次,反演结果如图 9所示,反演得到的电流密度分布与实际金属棒的位置基本一致,同时实验数据(图 10a)与反演得到的预测数据(图 10b)之间的误差小于4%(图 10c)。

图9

图9   沙箱实验数据的3D反演结果

Fig.9   3D inversion results of sandbox experimental data


图10

图10   沙箱试验的自然电位数据与反演的预测数据

a—沙箱试验数据;b—反演得到的预测数据;c—沙箱试验数据与观测数据之间的误差

Fig.10   self-potential data from sandbox experiment and predicted data obtained by inversion

a—sandbox experiment; b—predicted data obtained from inversion; c—error between experiment data and predicted data


5 结论

通过对合成模型和沙箱实验数据的自然电位3D正反演得到以下认识:①海底硫化物矿体通常会在近海底形成负的自然电位异常,且矿体越浅则异常越明显;②在合适的正则化因子、聚焦因子、深度加权矩阵等参数约束的条件下,自然电位3D聚焦反演能够较准确地得到海底空间多金属硫化物矿体的深度和边界范围等空间位置分布特征;③与迭代求解器相比,PARDISO直接求解器显著加快了3D反演计算效率。因此,本文提出的3D自然电位反演算法将会在未来硫化物资源勘探和评价中会发挥重要作用。

致谢

感谢中国石油大学(北京)朱忠民、王文义师兄在聚焦反演算法方面的指导,感谢法国萨瓦大学EDYTEM实验室André Revil教授提供沙箱实验的自然电位数据。衷心感谢评审专家对本文提出的修改意见。

参考文献

Jardani A, Revil A, Bolève A, et al.

Three-dimensional inversion of self-potential data used to constrain the pattern of groundwater flow in geothermal fields

[J]. Journal of Geophysical Research:Solid Earth, 2008, 113(B9):B09204.

[本文引用: 2]

Fox R W.

On the electro-magnetic properties of metalliferous veins in the mines of cornwall

[J]. Philosophical Transactions of the Royal Society of London, 1830, 120:399-414.

DOI:10.1098/rstl.1830.0027      URL     [本文引用: 2]

In one of my communications to the Cornwall Geological Society on the high temperature of the interior of the earth, I ventured to express a belief that mineral veins, and the internal heat, are connected with electrical action. This opinion, founded as it was on the curious arrangement of the veins, &c. in pri­mitive rocks, I have had the satisfaction to find confirmed by experiments made in some of the mines of Cornwall; and, I doubt not that the existence of electricity in metalliferous veins similarly circumstanced, and capable of con­ducting it, will prove to be as universal a fact, as the progressive increase of temperature under the earth’s surface is now admitted to be, much as my conclusions on this point were at one time controverted. In my first experiment I did not succeed in detecting any electricity; but in my second I had the gratification to observe considerable electrical action.

Corwin R F, Hoover D B.

The self-potential method in geothermal exploration

[J]. Geophysics, 1979, 44(2):226-245.

DOI:10.1190/1.1440964      URL     [本文引用: 1]

Laboratory measurements and field data indicate that self‐potential anomalies comparable to those observed in many areas of geothermal activity may be generated by thermoelectric or electrokinetic coupling processes. A study using an analytical technique based on concepts of irreversible thermodynamics indicates that, for a simple spherical source model, potentials generated by electrokinetic coupling may be of greater amplitude than those developed by thermoelectric coupling. Before more quantitative interpretations of potentials generated by geothermal activity can be made, analytical solutions for more realistic geometries must be developed, and values of in‐situ coupling coefficients must be obtained. If the measuring electrodes are not watered, and if telluric currents and changes in electrode polarization are monitored and corrections made for their effects, most self‐potential measurements are reproducible within about ±5 mV. Reproducible short‐wavelength geologic noise of as much as ±10 mV, primarily caused by variation in soil properties, is common in arid areas, with lower values in areas of uniform, moist soil. Because self‐potential variations may be produced by conductive mineral deposits, stray currents from cultural activity, and changes in geologic or geochemical conditions, self‐potential data must be analyzed carefully before a geothermal origin is assigned to observed anomalies. Self‐potential surveys conducted in a variety of geothermal areas show anomalies ranging from about 50 mV to over 2 V in amplitude over distances of about 100 m to 10 km. The polarity and waveform of the observed anomalies vary, with positive, negative, bipolar, and multipolar anomalies having been reported from different areas. Steep potential gradients often are seen over faults which are thought to act as conduits for thermal fluids. In some areas, anomalies several kilometers wide correlate with regions of known elevated thermal gradient or heat flow.

Patella D.

Self-potential global tomography including topographic effects

[J]. Geophysical Prospecting, 1997, 45(5):843-863.

DOI:10.1046/j.1365-2478.1997.570296.x      URL     [本文引用: 1]

This paper is an extension of a previous study, in which the principles of self‐potential ground surface tomography were outlined. The new arguments which are here set forth are the proper accounting for the topographic effects and a robust approach to global 3D tomography. The 2D case is initially considered in order to facilitate a full understanding of the new method. In order to gauge the topographic distortions, the concepts of slope effect and surface regularization are introduced, as suitable means to compute point by point correction factors of the measured self‐potential data, prior to the recognition of the tomographic images of the primary and induced electric sources underground. The tomographic approach is then developed by introducing again the concepts of the scanning function and of the charge occurrence probability function, which were amply dealt with in the previous paper. The new approach to 3D global tomography means here the composition of charge occurrence probability functions related to any two orthogonal surface components of the natural electric field, in order to account fully for the total surface component of the self‐potential field and hence to elicit the greatest amount of information. Two field examples are presented to show the full effectiveness of the proposed method. They refer, respectively, to a near‐surface investigation for archaeological purposes and to a very deep investigation in an active volcanic area.

仇勇海.

金属矿自然电位的空间分布及其应用

[J]. 物探与化探, 1985, 9(4):268-273.

[本文引用: 1]

Qiu Y H.

Spatial distribution of spontaneous potential of metallic orebody and its application

[J]. Geophysical and Geochemical Exploration, 1985, 9(4):268-273.

[本文引用: 1]

Revil A, Ehouarne L, Thyreault E.

Tomography of self-potential anomalies of electrochemical nature

[J]. Geophysical Research Letters, 2001, 28(23):4363-4366.

DOI:10.1029/2001GL013631      URL     [本文引用: 1]

Ore deposits and buried metals like pipelines behave as dipolar electrical geobatteries in which the source is due to (1) variation of the redox potential with depth, (2) oxido‐reduction reactions acting at the ore body/groundwater contact, and (3) migration of electrons in the ore body itself between the reducing and oxidizing zones. This polarization mechanism is responsible for an electrical field at the ground surface, the so‐called self‐potential anomaly. A new quick‐look tomographic algorithm is developed to locate electrical dipolar sources in the subsurface of the Earth from the analysis of these self‐potential signals. We applied this model to the self‐potential anomaly discussed by Stoll et al. [1995] in the vicinity of the KTB‐boreholes drilled during the Continental Deep Drilling Project in Germany. The source of this self‐potential signal is related to the presence of massive graphite veins associated with steeply inclined fault zones within the gneisses and observed in the KTB‐boreholes.

Kawada Y, Kasaya T.

Self-potential mapping using an autonomous underwater vehicle for the Sunrise deposit,Izu-Ogasawara arc,southern Japan

[J]. Earth,Planets and Space, 2018, 70(1):142.

DOI:10.1186/s40623-018-0913-6      [本文引用: 1]

Biswas A, Sharma S P.

Interpretation of self-potential anomaly over 2-D inclined thick sheet structures and analysis of uncertainty using very fast simulated annealing global optimization

[J]. Acta Geodaetica et Geophysica, 2017, 52(4):439-455.

DOI:10.1007/s40328-016-0176-2      URL     [本文引用: 1]

朱肖雄, 崔益安, 陈志学.

基于最小二乘正则化的自然电场场源反演成像

[J]. 地球物理学进展, 2016, 31(5):2313-2318.

[本文引用: 1]

Zhu X X, Cui Y A, Chen Z X.

Inversion for self-potential sources based on the least squares regularization

[J]. Progress in Geophysics, 2016, 31(5):2313-2318.

[本文引用: 1]

Mendonca C A.

Forward and inverse self-potential modeling in mineral exploration

[J]. Geophysics, 2008, 73(1):F33-F43.

[本文引用: 1]

Miller C A, Kang S G, Fournier D, et al.

Distribution of vapor and condensate in a hydrothermal system:Insights from self-potential inversion at mount Tongariro,new zealand

[J]. Geophysical Research Letters, 2018, 45(16):8190-8198.

DOI:10.1029/2018GL078780      URL     [本文引用: 1]

Inversion of self‐potential data for source current density, js, in complex volcanic settings, yields hydrological information without the need for a prior groundwater flow model; js contains information about pH, pore saturation, and permeability, from which we infer the distribution of liquid and vapor phases. To understand the hydrothermal flow dynamics and hydraulic connectivity between surface thermal features at Mount Tongariro volcano, New Zealand, we undertook a reconnaissance scale self‐potential survey and developed an inversion routine for js, constrained by an existing 3‐D conductivity model from magnetotelluric measurements. The 3‐D distribution of js at Mount Tongariro reveals a discontinuous zero js zone interpreted as vapor or residually saturated pore space, surrounded by low to moderate js interpreted as circulating condensate liquid. Bounding faults act as conduits for down flowing groundwater or condensate, as well as barriers for the hydrothermal system. Localized small‐scale circulation associated with individual surface thermal features, rather than a single circulating system, accounts for the lack of widespread anomalous geochemical observations prior to the 2012 Te Maari eruption.

王文义. 海底多金属硫化物自然电位响应机理及探测方法研究[D]. 北京: 中国石油大学(北京), 2019.

[本文引用: 1]

Wang W Y. Study on the mechanism of self-potential and detection method of seafloor polymetallic sulfide deposits[D]. Beijing: China University of Petroleum (Beijing), 2019.

[本文引用: 1]

Guo Y J, Cui Y A, Xie J, et al.

Seepage detection in earth-filled dam from self-potential and electrical resistivity tomography

[J]. Engineering Geology, 2022, 306:106750.

DOI:10.1016/j.enggeo.2022.106750      URL     [本文引用: 1]

Rittgers J B, Revil A, Karaoulis M, et al.

Self-potential signals generated by the corrosion of buried metallic objects with application to contaminant plumes

[J]. Geophysics, 2013, 78(5):EN65-EN82.

[本文引用: 1]

Cockett R, Heagy L J, Oldenburg D W.

Pixels and their neighbors:Finite volume

[J]. The Leading Edge, 2016, 35(8):703-706.

DOI:10.1190/tle35080703.1      URL     [本文引用: 1]

We take you on the journey from continuous equations to their discrete matrix representations using the finite-volume method for the direct current (DC) resistivity problem. These techniques are widely applicable across geophysical simulation types and have their parallels in finite element and finite difference. We show derivations visually, as you would on a whiteboard, and have provided an accompanying notebook at http://github.com/seg to explore the numerical results using SimPEG ( Cockett et al., 2015 ).

Haber E. Computational methods in geophysical electromagnetics[M]. Philadelphia: Society for Industrial and Applied Mathematics, 2014.

[本文引用: 4]

Puzyrev V, Koric S, Wilkin S.

Evaluation of parallel direct sparse linear solvers in electromagnetic geophysical problems

[J]. Computers & Geosciences, 2016, 89:79-87.

DOI:10.1016/j.cageo.2016.01.009      URL     [本文引用: 1]

Schenk O, Gärtner K.

Two-level dynamic scheduling in PARDISO:Improved scalability on shared memory multiprocessing systems

[J]. Parallel Computing, 2002, 28(2):187-197.

DOI:10.1016/S0167-8191(01)00135-1      URL     [本文引用: 1]

Bollhöfer M, Eftekhari A, Scheidegger S, et al.

Large-scale sparse inverse covariance matrix estimation

[J]. SIAM Journal on Scientific Computing, 2019, 41(1):A380-A401.

[本文引用: 1]

Barbara. Add PARDISO lib to Matlab in Windows 10, 2023,https://www.mathworks.com/matlabcentral/fileexchange/119053-add-pardiso-lib-to-matlab-in-windows-10

URL     [本文引用: 1]

Revil A, Jardani A. The self-potential method:Theory and applications in environmental geosciences[M]. Cambridge: Cambridge University Press, 2013.

[本文引用: 2]

Portniaguine O, Zhdanov M S.

3D magnetic inversion with data compression and image focusing

[J]. Geophysics, 2002, 67(5):1532.

DOI:10.1190/1.1512749      URL     [本文引用: 1]

We develop a method of 3‐D magnetic anomaly inversion based on traditional Tikhonov regularization theory. We use a minimum support stabilizing functional to generate a sharp, focused inverse image. An iterative inversion process is constructed in the space of weighted model parameters that accelerates the convergence and robustness of the method. The weighting functions are selected based on sensitivity analysis. To speed up the computations and to decrease the size of memory required, we use a compression technique based on cubic interpolation.

Nocedal J, Wright S J, Numerical optimization[M]. New York: Springer New York,1999.

[本文引用: 1]

Golub G H,

von Matt U.Generalized cross-validation for large-scale problems

[J]. Journal of Computational and Graphical Statistics, 1997, 6(1):1.

[本文引用: 1]

Mao D Q, Revil A.

Induced polarization response of porous media with metallic particles—Part 3:A new approach to time-domain induced polarization tomography

[J]. Geophysics, 2016, 81(4):D345-D357.

[本文引用: 1]

Zhdanov M S.

Geophysical inverse theory and regularization problems

[M]. Amsterdam:Elserier, 2002.

[本文引用: 1]

Li Y G, Oldenburg D W.

3D inversion of magnetic data

[J]. Geophysics, 1996, 61(2):394-408.

DOI:10.1190/1.1443968      URL     [本文引用: 1]

We present a method for inverting surface magnetic data to recover 3-D susceptibility models. To allow the maximum flexibility for the model to represent geologically realistic structures, we discretize the 3-D model region into a set of rectangular cells, each having a constant susceptibility. The number of cells is generally far greater than the number of the data available, and thus we solve an underdetermined problem. Solutions are obtained by minimizing a global objective function composed of the model objective function and data misfit. The algorithm can incorporate a priori information into the model objective function by using one or more appropriate weighting functions. The model for inversion can be either susceptibility or its logarithm. If susceptibility is chosen, a positivity constraint is imposed to reduce the nonuniqueness and to maintain physical realizability. Our algorithm assumes that there is no remanent magnetization and that the magnetic data are produced by induced magnetization only. All minimizations are carried out with a subspace approach where only a small number of search vectors is used at each iteration. This obviates the need to solve a large system of equations directly, and hence earth models with many cells can be solved on a deskside workstation. The algorithm is tested on synthetic examples and on a field data set.

侯振隆. 重力全张量梯度数据的并行反演算法研究及应用[D]. 长春: 吉林大学, 2016.

[本文引用: 1]

Hou Z L. Research and application of the parallel inversion algorithms based on the full tensor gravity gradiometry data[D]. Changchun: Jilin University, 2016.

[本文引用: 1]

Zhdanov M, Tolstaya E.

Minimum support nonlinear parametrization in the solution of a 3D magnetotelluric inverse problem

[J]. Inverse Problems, 2004, 20(3):937-952.

DOI:10.1088/0266-5611/20/3/017      URL     [本文引用: 1]

汪轩. 基于先验信息约束的电磁和地震结构耦合联合反演研究[D]. 北京: 中国石油大学(北京), 2020.

[本文引用: 1]

Wang X. Structural-coupled Joint Inversion of Electromagnetic and Seismic Data Based on a priori Information Constraint[D]. Beijing: China University of Petroleum (Beijing), 2020.

[本文引用: 1]

/

京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com