Please wait a minute...
E-mail Alert Rss
 
物探与化探  2023, Vol. 47 Issue (3): 739-746    DOI: 10.11720/wtyht.2023.1315
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
微波消解—电感耦合等离子体发射光谱法同时测定生物样品中12种元素的方法
肖细炼1,2(), 刘杰3(), 魏立1, 陈燕波1, 杨小丽1,2, 杨红梅1,2
1.中国地质调查局 武汉地质调查中心(中南地质科技创新中心),湖北 武汉 430205
2.中国地质调查局 花岗岩成岩成矿地质研究中心,湖北 武汉 430205
3.中国地质调查局 长沙自然资源综合调查中心,湖南 长沙 410699
Simultaneous determination of 12 elements in biological samples using microwave digestion and inductively coupled plasma-optical emission spectrometry
XIAO Xi-Lian1,2(), LIU Jie3(), WEI Li1, CHEN Yan-Bo1, YANG Xiao-Li1,2, YANG Hong-Mei1,2
1. Wuhan Geological Survey Center, China Geological Survey (Central South China Innovation Center for Geosciences), Wuhan 430205, China
2. Research Center for Petrogenesis and Mineralization of Granitoid Rocks, China Geological Survey, Wuhan 430205, China
3. Changsha General Survey of Natural Resources Center, China Geological Survey, Changsha 410699, China
全文: PDF(491 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

针对生物样品的特殊性,本文建立了微波消解—电感耦合等离子体发射光谱同时测定生物样品中铝(Al)、铁(Fe)、镁(Mg)、钙(Ca)、钠(Na)、钾(K)、锰(Mn)、磷(P)、钛(Ti)、钡(Ba)、锶(Sr)、锌(Zn)等12种元素的分析方法。通过对微波消解样品前处理条件进行优化,选择以10 mL逆王水和1 mL双氧水的混合试剂作为消解试剂,并选择合适的微波消解仪实验程序,能保证样品分解完全;选择最优的等离子体激发条件、元素分析谱线及扣背景位置,使得各元素测定的灵敏度高以及谱线无干扰;以国家一级生物成分标准物质作为校准系列绘制校准曲线,使得校准系列与试样基体尽可能一致,且选定方法总稀释倍数为100,消除了基体效应干扰影响。结果表明:该方法检出限为(0.04~4.93)×10-6;方法相对标准偏差(RSD)为1.41%~5.13%,精密度较好;经国家一级生物成分标准物质验证,方法相对误差(RE)均在±10%以内,测定值与标准值相吻合,方法准确可靠,能够满足生物样品分析要求。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
肖细炼
刘杰
魏立
陈燕波
杨小丽
杨红梅
关键词 微波消解电感耦合等离子体发射光谱法生物样品基体效应校准曲线    
Abstract

Given the particularity of biological samples, this study employed microwave digestion and inductively coupled plasma-optical emission spectrometry (ICP-OES) for the simultaneous determination of 12 elements in biological samples, including aluminum (Al), ferrum (Fe), magnesium (Mg), calcium (Ca), sodium (Na), potassium (K), manganese (Mn), phosphorus (P), titanium (Ti), barium (Ba), strontium (Sr), and zinc (Zn). By optimizing the pretreatment conditions of microwave digestion samples, this study selected the mixed reagent of reverse aqua regia (10 mL) and hydrogen peroxide (1 mL) as the digestion reagent, and an appropriate experimental procedure for the microwave digestion system to ensure complete decomposition of samples. Moreover, this study selected the optimal plasma excitation conditions, analytical spectral lines of elements, and background subtraction position to ensure high determination sensitivity of elements and interference-free spectral lines. This study plotted the calibration curve with the national primary reference materials for biological components as the calibration series, making the calibration series consistent with the sample matrix as much as possible. The simultaneous determination method had a total dilution multiple of 100, eliminating the interference of the matrix effect. The results show that this method had a detection limit of (0.04~4.93)×10-6 and a relative standard deviation (RSD) of 1.41%~5.13%, showing high precision. As verified by the national primary reference materials, this method had a relative error (RE) within ±10% and determined values consistent with standard values. Therefore, this method is accurate and reliable, meeting the analysis requirements of biological samples.

Key wordsmicrowave digestion    inductively coupled plasma-optical emission spectrometry    biological sample    matrix effect    calibration curve
收稿日期: 2022-06-16      修回日期: 2022-12-17      出版日期: 2023-06-20
ZTFLH:  O657  
  X830.1  
基金资助:中国地质调查局地质调查项目(DD20221777);中国地质调查局花岗岩成岩成矿地质研究中心开放基金项目(PMGR202012)
通讯作者: 刘杰(1987-),男,助理工程师,硕士,主要从事实验室质量管理工作。Email:527245266@qq.com
作者简介: 肖细炼(1984-),男,高级工程师,硕士,主要从事地球化学分析方面的研究工作。Email: xiaoxilianezhou@126.com
引用本文:   
肖细炼, 刘杰, 魏立, 陈燕波, 杨小丽, 杨红梅. 微波消解—电感耦合等离子体发射光谱法同时测定生物样品中12种元素的方法[J]. 物探与化探, 2023, 47(3): 739-746.
XIAO Xi-Lian, LIU Jie, WEI Li, CHEN Yan-Bo, YANG Xiao-Li, YANG Hong-Mei. Simultaneous determination of 12 elements in biological samples using microwave digestion and inductively coupled plasma-optical emission spectrometry. Geophysical and Geochemical Exploration, 2023, 47(3): 739-746.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2023.1315      或      https://www.wutanyuhuatan.com/CN/Y2023/V47/I3/739
元素 分析线波长/nm 谱线级次 扣背景位置
Al 167.079 502 左、右
Fe 259.940 130 左、右
Mg 279.553 121 左、右
Ca 393.366 86 左、右
Na 588.995 57 左、右
K 766.490 44 左、右
Mn 257.610 131 左、右
P 177.495 490 左、右
Ti 334.941 101 左、右
Ba 455.403 74 左、右
Sr 407.771 83 左、右
Zn 213.856 458 左、右
Table 1  各元素分析谱线
步骤 升温速率/
(℃·min-1)
温度/℃ 保温时
间/min
压力/
atm
发射功
率/W
1 15 100 15 20 1500
2 10 140 25 30 1500
3 5 180 10 40 1500
Table 2  微波消解仪实验程序
元素 标准物质含量/10-6 校准曲线方程 线性相关系数r
GBW10014 GBW10023 GBW07604 GBW07602
Al 166 4900 1040 2140 y=34.19x+5.49 0.9997
Fe 98 1450 274 1020 y=419.96x+0.81 0.9998
Mg 2410 4000 6500 2870 y=439.13x+153.11 0.9996
Ca 700 1530 18100 22200 y=41846.75x+1526.05 0.9997
Na 10900 15500 200 11000 y=1900.91x+3174.82 0.9998
K 15500 33600 13800 8500 y=342.86x-11.92 0.9997
Mn 18.7 68.0 45.0 58.0 y=65343.68x+16.20 0.9999
P 4600 5850 1680 830 y=182.06x+1.42 0.9998
Ti 9.0 92.0 20.4 95.0 y=1605.31x+0.51 0.9995
Ba 12.0 10.4 26.0 19.0 y=28015.95x+122.45 0.9997
Sr 48 24 154 345 y=38969.35x+0.57 1.0000
Zn 26.0 28.0 37.0 20.6 y=14972.49x+39.51 0.9997
Table 3  标准物质各元素含量及校准曲线方程
元素 GBW07603 GBW07605 GBW10015 GBW10020 检出限/
10-6
X ˉ/10-6 RSD/% X ˉ/10-6 RSD/% X ˉ/10-6 RSD/% X ˉ/10-6 RSD/%
Al 2024 4.05 3026 4.69 620.67 2.10 1143 3.62 4.93
Fe 1047 5.13 261.39 2.60 542.42 2.39 463.50 4.20 4.26
Mg 4790 2.44 1734 3.52 5513 2.67 2322 2.80 2.48
Ca 16823 2.24 4248 2.48 6626 2.46 42073 1.41 1.25
Na 19605 1.77 44.02 4.24 15330 2.63 128.03 3.70 1.69
K 9252 2.29 16557 2.40 24666 2.46 7617 2.50 3.55
Mn 61.58 4.54 1252 3.50 42.70 3.99 30.12 4.25 0.14
P 1027 4.80 2817 3.44 3521 3.20 1261 4.69 1.02
Ti 94.67 3.14 24.76 4.29 29.77 2.91 39.03 3.45 0.37
Ba 19.37 5.07 57.65 2.64 8.91 3.51 99.65 2.53 0.11
Sr 243.77 2.16 15.19 3.56 87.39 3.07 169.14 2.84 0.08
Zn 54.73 3.94 26.59 4.34 34.73 2.44 18.82 3.40 0.04
Table 4  方法精密度及检出限
元素 项目 GBW07603 GBW07605 GBW10015 GBW10020 GBW10047 GBW10049
Al 认定值/10-6 2000 3000 610 1150 460 3000
平均值/10-6 2105 3115 614.55 1179 456.85 3125
RE/% 5.25 3.83 0.75 2.52 -0.68 4.17
Fe 认定值/10-6 1070 264 540 480 148 1010
平均值/10-6 1054 265.99 548.57 473.69 145.69 1076
RE/% -1.50 0.75 1.59 -1.31 -1.56 6.53
Mg 认定值/10-6 4800 1700 5520 2340 910 2700
平均值/10-6 4769 1678 5565 2285 904.25 2645
RE/% -0.65 -1.29 0.82 -2.35 -0.63 -2.04
Ca 认定值/10-6 16800 4300 6600 42000 2550 22800
平均值/10-6 17012 4218 6575 41695 2538 22514
RE/% 1.26 -1.91 -0.38 -0.73 -0.47 -1.25
Na 认定值/10-6 19600 44 15000 130 6500 300
平均值/10-6 19328 43.66 14892 128.54 6472 281.65
RE/% -1.39 -0.77 -0.72 -1.12 -0.43 -6.12
K 认定值/10-6 9200 16600 24900 7700 10800 21000
平均值/10-6 9345 16799 24885 7633 10722 20069
RE/% 1.58 1.20 -0.06 -0.87 -0.72 -4.43
Mn 认定值/10-6 61 1240 41 30.5 12.1 173
平均值/10-6 63.25 1295 40.93 31.68 12.65 175.68
RE/% 3.69 4.44 -0.17 3.87 4.55 1.55
P 认定值/10-6 1000 2840 3600 1250 2300 3600
平均值/10-6 1046 2788 3622 1247 2324 3544
RE/% 4.60 -1.83 0.61 -0.24 1.04 -1.56
Ti 认定值/10-6 95 24 28 38 12 62
平均值/10-6 93.52 22.58 27.55 40.25 11.68 63.85
RE/% -1.56 -5.92 -1.61 5.92 -2.67 2.98
Ba 认定值/10-6 18 58 9 98 24 36
平均值/10-6 17.44 56.98 9.28 99.63 23.54 34.44
RE/% -3.11 -1.76 3.11 1.66 -1.92 -4.33
Sr 认定值/10-6 246 15.2 87 170 22 74
平均值/10-6 248.69 16.05 84.69 168.57 22.98 73.22
RE/% 1.09 5.59 -2.66 -0.84 4.45 -1.05
Zn 认定值/10-6 55 26.3 35.3 18 11.2 25
平均值/10-6 53.39 26.58 33.67 17.62 10.86 23.96
RE/% -2.93 1.06 -4.62 -2.11 -3.04 -4.16
Table 5  方法准确度
[1] 《岩石矿物分析》编委会. 岩石矿物分析:第四版第四分册[M]. 北京: 地质出版社, 2011:878-879,942-943.
[1] The Editorial Committee of Rock and Mineral Analysis. Rock and mineral analysis:The fourth edition:Vol.Ⅳ[M]. Beijing: Geological Publishing House, 2011:878-879,942-943.
[2] 于兆水, 陈海杰, 张雪梅, 等. 微波消解—高分辨电感耦合等离子体质谱测定生物样品中55种元素[J]. 物探化探计算技术, 2014, 36(6):757-762.
[2] Yu Z S, Chen H J, Zhang X M, et al. Determination of 55 kinds of elements in biological sample using high resolution ICP-MS with microwave digestion[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2014, 36(6):757-762.
[3] 张勤, 李国会, 樊守忠, 等. X射线荧光光谱法测定土壤和水系沉积物等样品中碳、氮、氟、氯、硫、溴等42种主次和痕量元素[J]. 分析试验室, 2008, 27(11):51-57.
[3] Zhang Q, Li G H, Fan S Z, et al. Study on determination of 42 major,minor and trace elements in soil and stream sediment samples by X-ray fluorescence spectrometry[J]. Chinese Journal of Analysis Laboratory, 2008, 27(11):51-57.
[4] 肖细炼, 李小丹, 刘金, 等. 粉末压片—波长色散X射线荧光光谱法测定地球化学样品中氯的方法研究[J]. 华南地质, 2021, 37(3):361-367.
[4] Xiao X L, Li X D, Liu J, et al. The method study on determination of chlorine in geochemical samples by wavelength dispersive X-ray fluorescence spectrometry with pressed powder[J]. South China Geology, 2021, 37(3):361-367.
[5] 冯永明, 邢应香, 刘洪青, 等. 微波消解—电感耦合等离子体质谱法测定生物样品中微量硒的方法研究[J]. 岩矿测试, 2014, 33(1):34-39.
[5] Feng Y M, Xing Y X, Liu H Q, et al. Determination of trace selenium in biological samples by inductively coupled plasma-mass spectrometry with microwave digestion[J]. Rock and Mineral Analysis, 2014, 33(1):34-39.
[6] 杨俊衡. 微波消解试样—原子荧光光谱法测定土壤中硒碲[J]. 理化检验:化学分册, 2008, 44(3):240-242.
[6] Yang J H. Microwave-assisted sample digestion AFS determination of Se and Te in soil[J]. Physical Testing and Chemical Analysis Part B:Chemical Analysis, 2008, 44(3):240-242.
[7] 张维宇, 张土秀, 倪天增, 等. 程序控温石墨消解—原子荧光光谱法测定土壤中的硒[J]. 中国无机分析化学, 2011, 1(4):36-39.
[7] Zhang W Y, Zhang T X, Ni T Z, et al. Determination of total selenium in soil by atomic fluorescence spectrometry with program temperature-controlled graphite digestion[J]. Chinese Journal of Inorganic Analytical Chemistry, 2011, 1(4):36-39.
[8] 张霖琳, 邢小茹, 吴国平, 等. 微波消解—ICP-MS测定人体血浆中30种痕量元素[J]. 光谱学与光谱分析, 2009, 29(4):1115-1118.
[8] Zhang L L, Xing X R, Wu G P, et al. Determination of thirty trace elements in human plasma by microwave digestion-ICP-MS[J]. Spectroscopy and Spectral Analysis, 2009, 29(4):1115-1118.
[9] 田宝珍, 曹福苍, 雷鹏举, 等. 微波消解制样技术用于生物样品微量分析的研究[J]. 食品与发酵工业, 2000, 26(3):15-20.
[9] Tian B Z, Cao F C, Lei P J, et al. Dissolution of biological samples by microwave digestion for the determination of trace elements[J]. Food and Fermentation Industries, 2000, 26(3):15-20.
[10] 杨萌, 魏星, 张璇, 等. 石墨炉原子吸收光谱法直接测定细胞中镉的研究[J]. 分析科学学报, 2022, 38(1):6-10.
[10] Yang M, Wei X, Zhang X, et al. Direct determination of cadmium in cells by graphite furnace atomic absorption spectrometry[J]. Journal of Analytical Science, 2022, 38(1):6-10.
[11] 高明飞. 石墨炉原子吸收光谱法测定石脑油中砷[J]. 理化检验:化学分册, 2020, 56(6):726-729.
[11] Gao M F. Determination of arsenic in naphtha by graphite furnace atomic absorption spectrometry[J]. Physical Testing and Chemical Analysis Part B:Chemical Analysis, 2020, 56(6):726-729.
[12] Reboucas M, Ferreira S, Debarrosneto B, et al. Behabiour of chemical modifiers in the determination of arsenic by electrothermal atomic absorption spectrometry in petroleum products[J]. Talanta, 2005, 67(1):195-204.
doi: 10.1016/j.talanta.2005.02.014 pmid: 18970155
[13] 陈海杰, 马娜, 薄玮, 等. 土壤和水系沉积物中硒的价态分析方法研究[J]. 光谱学与光谱分析, 2021, 41(3):871-874.
[13] Chen H J, Ma N, Bo W, et al. Research on the valence state analysis method of selenium in soil and stream sediment[J]. Spectroscopy and Spectral Analysis, 2021, 41(3):871-874.
[14] 陈海杰, 马娜, 陈卫明, 等. 抑制植物样品消解过程中硒挥发的方法[J]. 分析化学, 2020, 48(9):1268-1272.
[14] Chen H J, Ma N, Chen W M, et al. A method for suppressing volatile loss of selenium in digestion of plant samples[J]. Chinese Journal of Analytical Chemistry, 2020, 48(9):1268-1272.
[15] 陈海杰, 马娜, 白金峰, 等. 基于外供氢气—氢化物—原子荧光光谱法测定地球化学样品中硒的研究[J]. 光谱学与光谱分析, 2020, 40(9):2896-2900.
[15] Chen H J, Ma N, Bai J F, et al. Study on determination of Se in geochemical samples by external supply H2-hydride generation atomic fluorescence spectrometry[J]. Spectroscopy and Spectral Analysis, 2020, 40(9):2896-2900.
[16] 肖细炼, 朱园园, 陈燕波, 等. 交流电弧—光电直读发射光谱法测定岩石矿物样品中高含量锡[J]. 理化检验:化学分析, 2021, 57(3):241-246.
[16] Xiao X L, Zhu Y Y, Chen Y B, et al. Determination of high content of tin in rock and mineral samples by alternating current arc-optoelectronic direct reading emission spectrometry[J]. Physical Testing and Chemical Analysis Part B:Chemical Analysis, 2021, 57(3):241-246.
[17] 肖细炼, 王亚夫, 张春林, 等. 交流电弧—光电直读发射光谱同时测定碳酸盐矿物中银硼锡的方法研究[J]. 岩矿测试, 2020, 39(5):699-708.
[17] Xiao X L, Wang Y F, Zhang C L, et al. Simultaneous determination of silver,boron and tin in carbonate minerals by alternating current-arc optoelectronic direct reading-emission spectrometry[J]. Rock and Mineral Analysis, 2020, 39(5):699-708.
[18] 肖细炼, 王亚夫, 陈燕波, 等. 交流电弧光电直读发射光谱法测定地球化学样品中银硼锡[J]. 冶金分析, 2018, 38(7):27-32.
[18] Xiao X L, Wang Y F, Chen Y B, et al. Determination of silver,boron and tin in geochemical by alternating current arc optoelectronic direct reading emission spectrometry[J]. Metallurgical Analysis, 2018, 38(7):27-32.
[19] Ralf M, Jürgen H, Heike T, et al. Multielement trace determination in SiC powders:Assessment of interlaboratory comparisons aimed at the validation and standardization of analytical procedures with direct solid sampling based on ETV ICP OES and DC arc OES[J]. Analytical and Bioanalytical Chemistry, 2005, 383:1060-1074.
doi: 10.1007/s00216-005-3415-x
[20] 刘宏伟, 符靓. 微波等离子体原子发射光谱测定Li4Ti5O12中的金属杂质元素[J]. 光谱学与光谱分析, 2021, 41(10):3021-3025.
[20] Liu H W, Fu L. Analysis of metal impurity elements in Li4Ti5O12through microwave plasma atomic emission spectroscopy[J]. Spectroscopy and Spectral Analysis, 2021, 41(10):3021-3025.
[21] 胡璇, 李跃平, 石磊. 基体匹配法和内标法—电感耦合等离子体原子发射光谱测定铸造锌合金中高含量铝和铜光谱[J]. 冶金分析, 2014, 34(4):17-20.
[21] Hu X, Li Y P, Shi L. Comparison on the spectral interference correction in the determination of high content aluminum and copper in casting zinc alloy by inductively coupled plasma atomic emission spectrometry with matrix matching method and internal standard method[J]. Metallurgical Analysis, 2014, 34(4):17-20.
[22] 肖凡, 张宁, 姜云军, 等. 密闭酸溶—电感耦合等离子体原子发射光谱法测定地球化学调查样品中硼[J]. 冶金分析, 2018, 38(6):50-54.
[22] Xiao F, Zhang N, Jiang Y J, et al. Determination of boron in geochemical survey sample by inductively coupled plasma atomic emission spectrometry after acid dissolution in closed system[J]. Metallurgical Analysis, 2018, 38(6):50-54.
[23] 姜云军, 李星, 姜海伦, 等. 四酸敞口溶解—电感耦合等离子体发射光谱法测定土壤中的硫[J]. 岩矿测试, 2018, 37(2):152-158.
[23] Jiang Y J, Li X, Jiang H L, et al. Determination of sulfur in soil by inductively coupled plasma-optical emission spectrometry with four acids open dissolution[J]. Rock and Mineral Analysis, 2018, 37(2):152-158.
[24] 王佳翰, 李正鹤, 杨峰, 等. 碱熔—电感耦合等离子体原子发射光谱法测定海洋沉积物中铝铁锰钛[J]. 冶金分析, 2012, 41(3):68-74.
[24] Wang J H, Li Z H, Yang F, et al. Determination of aluminum,iron,manganese,titanium in marine sediments by inductively coupled plasma atimic emission spectrometry with alkali fusion[J]. Metallurgical Analysis, 2012, 41(3):68-74.
[25] 刘海明, 武明丽, 成景特. 酸溶分解—电感耦合等离子体质谱内标法测定地质样品中的痕量银[J]. 岩矿测试, 2021, 40(3):444-450.
[25] Liu H M, Wu M L, Cheng J T. Determination of trace silver in geological samples by inductively coupled plasma-mass spectrometry with acid decomposition and internal standard calibration[J]. Rock and Mineral Analysis, 2021, 40(3):444-450.
[26] 史瑞新, 赵艳萍, 管鹏, 等. 超声提取—单颗粒电感耦合等离子体质谱法测定牙膏中纳米银颗粒[J]. 分析化学, 2020, 48(4):523-529.
[26] Shi R X, Zhao Y P, Guan P, et al. Determination of silver nanoparticles in toothpaste by single particle-inductively coupled plasma-mass spectrometry with ultrasonic extraction[J]. Chinese Journal of Analytical Chemistry, 2020, 48(4):523-529.
[27] 朱兆洲, 杨鑫鑫, 李军, 等. 固相萃取—电感耦合等离子体质谱法测定地表高盐水体中的痕量稀土元素[J]. 光谱学与光谱分析, 2022, 42(6):1862-1866.
[27] Zhu Z Z, Yang X X, Li J, et al. Determination of rare earth elements in high-salt water by ICP-MS after pre-concentration using a chelating resin[J]. Spectroscopy and Spectral Analysis, 2022, 42(6):1862-1866.
[28] 《岩石矿物分析》编委会. 岩石矿物分析:第四版第一分册[M]. 北京: 地质出版社, 2011:471-473.
[28] The Editorial Committee of Rock and Mineral Analysis. Rock and mineral analysis:The fourth edition:Vol.Ⅰ[M]. Beijing: Geological Publishing House, 2011:471-473.
[1] 陈海杰, 于兆水, 邢夏, 张雪梅, 张勤. 微波消解—冷原子荧光光谱法测定植物样品中的汞[J]. 物探与化探, 2014, 38(2): 393-395,401.
[2] 花永涛, 程锋, 赖万昌, 杨强. X荧光分析仪在新疆某地的应用[J]. 物探与化探, 2006, 30(4): 370-373.
[3] 许春林. X射线荧光探矿技术在福建紫金山铜矿区的应用效果[J]. 物探与化探, 1993, 17(2): 116-119.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com