Please wait a minute...
E-mail Alert Rss
 
物探与化探  2022, Vol. 46 Issue (6): 1463-1469    DOI: 10.11720/wtyht.2022.1542
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
基于NB-IoT的宽频带岩矿石标本频谱激电响应测试仪测控软件研发
侯胜蓝1,2(), 陈儒军1,2,3,4(), 王子辉1,2, 刘志同1,2, 刘瑨1,2
1.中南大学 地球科学与信息物理学院,湖南 长沙 410083
2.中南大学 AIoT(人工智能物联网)与地质地球物理创新创业教育中心,湖南 长沙 410083
3.有色金属成矿预测与地质环境检测教育部重点实验室,湖南 长沙 410083
4.有色资源与地质灾害探查湖南省重点实验室,湖南 长沙 410083
Development of the NB-IoT-based measurement and control software for broadband SIP response testers for rock and ore specimens
HOU Sheng-Lan1,2(), CHEN Ru-Jun1,2,3,4(), WANG Zi-Hui1,2, LIU Zhi-Tong1,2, LIU Jin1,2
1. School of Geoscience and Info-Physics, Central South University, Changsha 410083,China
2. AIoT Innovation and Entrepreneurship Education Center for Geology and Geophysics, Central South University, Changsha 410083,China
3. The Key Laboratory of Nonferrous Metal Mineralization Prediction and Geological Environment Detection of Ministry of Education, Changsha 410083,China
4. Hunan Key Laboratory of Non-ferrous Resources and Geological Disaster Exploration, Changsha 410083,China
全文: PDF(2189 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

岩矿石标本频谱激电响应测试仪通过测量岩矿石标本的频谱激电特性,了解矿体与围岩的频谱激电响应差异,为找矿提供基础依据,在地球物理勘探中应用广泛。然而现有的岩矿石标本频谱激电响应测试仪在带宽、智能化、便携性、低功耗等方面存在不足,为解决这些问题,本文结合NB-IoT、蓝牙、Wifi等物联网技术设计出一款宽频带岩矿石标本频谱激电响应测控软件,实现了近程通讯、云端通讯、数据可视化、数据处理等功能。经过测试,该软件操作简单、运行稳定、人机交互友好、达到预期效果。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
侯胜蓝
陈儒军
王子辉
刘志同
刘瑨
关键词 频谱激电岩矿石标本测控软件NB-IoT    
Abstract

Spectral induced polarization (SIP) response testers for rock and ore specimens determine the SIP response differences between ore bodies and host rocks by measuring the SIP characteristics of rock and ore specimens, thus providing a basis for ore prospecting. They are widely used in geophysical exploration. However, the existing SIP response testers have shortcomings in terms of bandwidth, intelligence, portability, and power consumption. Given this, this study developed a piece of measurement and control software for SIP response testers based on the Internet of Things (IoT) techniques including NB-IoT, Bluetooth, and Wifi, realizing the functions such as near-field communication, cloud communication, data visualization, and data processing. The test results verify that the software can achieve the desired effect owing to its easy operation, stable running, and friendly man-machine interaction.

Key wordsspectral induced polarization    rock and ore    specimen    measurement and control software    NB-IoT
收稿日期: 2021-09-27      修回日期: 2022-06-13      出版日期: 2022-12-20
ZTFLH:  P631  
基金资助:国家自然科学基金基础科学中心项目(72088101)
通讯作者: 陈儒军
作者简介: 侯胜蓝(1998-),女,中南大学硕士研究生,主要从事电法、瞬变电磁法仪器的研制工作。Email:1875565461@qq.com
引用本文:   
侯胜蓝, 陈儒军, 王子辉, 刘志同, 刘瑨. 基于NB-IoT的宽频带岩矿石标本频谱激电响应测试仪测控软件研发[J]. 物探与化探, 2022, 46(6): 1463-1469.
HOU Sheng-Lan, CHEN Ru-Jun, WANG Zi-Hui, LIU Zhi-Tong, LIU Jin. Development of the NB-IoT-based measurement and control software for broadband SIP response testers for rock and ore specimens. Geophysical and Geochemical Exploration, 2022, 46(6): 1463-1469.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2022.1542      或      https://www.wutanyuhuatan.com/CN/Y2022/V46/I6/1463
Fig.1  岩矿石标本频谱激响应(复电阻率)测量原理
Fig.2  测控系统总体结构
Fig.3  指令协议解析格式
类型 描述
Object String 标本名

属性
Resistivity String 电阻率
Phase String 相位
Frequency String 频率

命令
Status String 仪器状态
Config String 配置指令
Table 1  产品属性和命令
Fig.4  安卓端App主流程
信号频率
f1/Hz
采样频率
f2/Hz
采样时间
t/s
采样点数
(N=f2×t)
频率分辨率
(r=f2/N)
f1>50000 1250000 0.0032 4000 312.500
50000≥f1>5000 625000 0.0064 4000 156.250
5000≥f1>1000 312500 0.0128 4000 78.125
1000≥f1>100 156250 0.5000 78125 2.000
100≥f1≥1 78125 1.0000 78125 1.000
Table 2  采样频率、采样点数与信号频率关系
Fig.5  岩矿石标本SIP响应测试仪(a)近程控制、(b)参数设置和(c)远程控制安卓端软件界面
Fig.6  黄铜矿标本相片(a)及其SIP响应(b)
Fig.7  片岩标本照片(a)及其SIP响应(b)
[1] 曹中林, 昌彦君, 何展翔. 基于演化算法的复电阻率频谱参数反演[J]. 工程地球物理学报, 2005, 2(1):33-38.
[1] Cao Z L, Chang Y J, He Z X. Inversion of complex resistivity spectrum parameters based on evolutionary algorithm[J]. Journal of Engineering Geophysics, 2005, 2(1): 33-38.
[2] 罗传华, 昌彦君, 李志华. 频谱激电法在铜陵市某滑坡地段滑动面勘探中的应用[J]. 工程地球物理学报, 2017, 14(1):26-30.
[2] Luo C H, Chang Y J, Li Z H. The application of the spectrum induced polarization method in the exploration of the sliding surface of a landslide section in Tongling City[J]. Journal of Engineering Geophysics, 2017, 14(1): 26-30.
doi: 10.1088/1742-2132/14/1/26
[3] 郑冰. 频谱激电法在某铅锌银矿的应用[J]. 工程地球物理学报, 2015, 12(6):750-754.
[3] Zheng B. Application of spectrum induced polarization method in a lead-zinc-silver mine[J]. Journal of Engineering Geophysics, 2015, 12(6):750-754.
[4] 武斌, 邹俊, 马代海. 频谱激电法在天然气水合物勘查中的应用[J]. 四川地质学报, 2016, 36(1):135-138.
[4] Wu B, Zou J, Ma D H. Application of spectrum induced polarization method in natural gas hydrate exploration[J]. Journal of Sichuan Geology, 2016, 36(1): 135-138.
[5] Deng Y, Shi X, Zhang Z. Application of spectral induced polarization for characterizing surfactant-enhanced DNAPL remediation in laboratory column experiments[J]. Journal of Contaminant Hydrology, 2020, 230:103603.
doi: 10.1016/j.jconhyd.2020.103603
[6] 杨迪. 天然岩矿石复电阻率测量及频谱曲线特征研究[D]. 北京: 中国地质大学(北京), 2019.
[6] Yang D. Study on complex resistivity measurement and spectrum curve characteristics of natural rock ore[D]. Beijing: China University of Geosciences (Beijing), 2019.
[7] 郑树桐. 扫频介电测井岩石物理基础实验研究[D]. 北京: 中国石油大学(北京), 2018.
[7] Zheng S T. Basic experimental study on rock physics of swept frequency dielectric logging[D]. Beijing: China University of Petroleum (Beijing), 2018.
[8] 曹春国, 冯国彦, 刘红. 频谱激电法(SIP)在深部金属矿探测中的原理与应用[J]. 山东国土资源, 2009, 25(9):41-45.
[8] Cao C G, Feng G Y, Liu H. Principle and application of spectrum IP method (SIP) in deep metal mine exploration[J]. Shandong Land and Resources, 2009, 25(9):41-45.
[9] 葛双超, 邓明, 陈凯. 复电阻率测量方法与模型仿真[J]. 地球科学进展, 2014, 29(11):1271-1276.
doi: 10.11867/j.issn.1001-8166.2014.11.1271
[9] Ge S C, Deng M, Chen K. Complex resistivity measurement method and model simulation[J]. Advances in Earth Sciences, 2014, 29(11):1271-1276.
[10] 林君. 高端地球物理仪器研究及我国产业化现状[J]. 仪器仪表学报, 2010, 31(8):174-180.
[10] Lin J. Research on high-end geophysical instruments and the status quo of industrialization in my country[J]. Chinese Journal of Scientific Instrament, 2010, 31(8):174-180.
[11] 陈儒军. 新技术在电法仪器中的应用概况及前景[C]// 当代矿山地质地球物理新进展: 中国地质学会, 2004:239-244.
[11] Chen R J. Overview and prospects of the application of new technologies in electrical instruments[C]// New progress in contemporary mine geology and geophysics: The Geological Society of China, 2004:239-244.
[12] 王甫康, 庹先国, 刘勇, 等. 节点地震仪无线传输系统设计[J]. 制造业自动化, 2021, 43(11):85-88.
[12] Wang F K, Tuo X G, Liu Y, et al. Design of wireless transmission system for nodal seismograph[J]. Manufacturing Automation, 2021, 43(11):85-88.
[13] 文尚石, 汤井田, 裴婧, 等. 基于Android平台的广域电磁接收机采集监控软件研究与实现[J]. 地球物理学进展, 2018, 33(2):866-873.
[13] Wen S S, Tang J T, Pei J, et al. Research and implementation of wide-area electromagnetic receiver acquisition and monitoring software based on Android platform[J]. Progress in Geophysics, 2018, 33(2):866-873.
[14] 何锦淳, 李爵成, 李丹. 基于 STM32 的智能安防系统[J]. 物联网技术, 2020, 10(5):49-54.
[14] He J C, Li J C, Li D. Smart security system based on STM32[J]. Internet of Things Technology, 2020, 10(5):49-54.
[15] 舒泰歌, 游乾乾, 李慕凡. 基于STM32 无线信息采集系统设计[J]. 科技风, 2020(15):120-121.
[15] Shu T G, You Q Q, Li M F. Design of wireless information collection system based on STM32[J]. Technology Wind, 2020(15):120-121.
[16] 杨杰. 基于华为云的数据挖掘和展示系统研究[J]. 无线万联科技, 2020, 17(24):24-25.
[16] Yang J. Research on data mining and display system based on Huawei Cloud[J]. Wireless Wanlian Technology, 2020, 17(24):24-25.
[17] 金恩曼, 陈培余. 一种智能大棚的温湿度检测系统数字技术与应用[J]. 数字与技术, 2019, 37(7):85-87.
[17] Jin E M, Chen P Y. Digital technology and application of a temperature and humidity detection system for intelligent greenhouse[J]. Digital and Technology, 2019, 37(7):85-87.
[1] 王飞飞, 陈儒军, 李生杰, 申瑞杰, 殷昊, 刘峰海, 彭鑫. 宽带岩矿石标本频谱激电测试仪采集系统研制[J]. 物探与化探, 2022, 46(6): 1454-1462.
[2] 石加玉, 郭鹏, 李勇. 频谱激电测量仪器关键技术研究及实现[J]. 物探与化探, 2021, 45(6): 1475-1481.
[3] 陆大进, 薛国强, 杜东旭, 马振军. 安微省典型矿集区岩石各向异性电性参数测试分析[J]. 物探与化探, 2017, 41(2): 333-340.
[4] 宋豪, 郭佳, 张风祥, 倪云鹏, 冯磊. 频谱激电法在豫西某铅锌银矿区中的应用[J]. 物探与化探, 2015, 39(3): 506-511.
[5] 杨振威, 郑伟, 李晓斌, 王华峰. 频谱激电法的发展与展望[J]. 物探与化探, 2015, 39(1): 22-28.
[6] 王庆乙, 邱钢, 代丽, 王生, 徐立忠. 岩矿石标本真电参数的测试方法与测试系统(WXE)的研制[J]. 物探与化探, 2014, 38(4): 787-792.
[7] 王庆乙, 徐立忠, 闫伟. 质子磁力仪平测岩矿标本磁参数的装置与计算方法[J]. 物探与化探, 2013, 37(3): 508-511.
[8] 李磊, 陈晓东, 郭友钊. RP-1型岩矿石电性测量系统研制[J]. 物探与化探, 2013, 37(3): 529-532.
[9] 樊金生, 张云明, 郭文波, 王晓燕. 用质子磁力仪测定岩(矿)石标本几个问题[J]. 物探与化探, 2012, 36(2): 250-252,259.
[10] 孙明, 林君, 高游, 张秉仁. 新疆土屋斑岩铜矿区地震反射法可行性研究[J]. 物探与化探, 2003, 27(5): 341-344.
[11] 赵希刚. 两种方法测定岩矿石密度的对比研究[J]. 物探与化探, 2003, 27(3): 202-205.
[12] 刘煜洲, 刘因, 金安忠, 姜枚, 王寅生, 傅建民, 曹静平. 岩矿石震源电磁辐射性质实验研究[J]. 物探与化探, 1997, 21(4): 269-276,246.
[13] 李金铭. 电法勘探方法发展概况[J]. 物探与化探, 1996, 20(4): 250-258,249.
[14] 钟清, 杨辟元, 林天亮. 震电磁效应的实验室研究[J]. 物探与化探, 1996, 20(1): 58-63.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com