Please wait a minute...
E-mail Alert Rss
 
物探与化探  2022, Vol. 46 Issue (5): 1121-1131    DOI: 10.11720/wtyht.2022.0039
  东北黑土地地球化学调查专栏 本期目录 | 过刊浏览 | 高级检索 |
建三江地区土壤氮磷生态化学计量空间异质性特征及其影响因素分析
房娜娜1,2,3(), 杨泽1,2,3, 刘国栋1,2,3, 戴慧敏1,2,3, 刘凯1,2,3()
1.中国地质调查局 沈阳地质调查中心,辽宁 沈阳 110034
2.自然资源部 黑土地演化与生态效应重点实验室,辽宁 沈阳 110034
3.辽宁省黑土地演化与生态效应重点实验室,辽宁 沈阳 110034
Spatial heterogeneity and influencing factors of the ecological stoichiometry of soil nitrogen and phosphorus in the Jiansanjiang area
FANG Na-Na1,2,3(), YANG Ze1,2,3, LIU Guo-Dong1,2,3, DAI Hui-Min1,2,3, LIU Kai1,2,3()
1. Shenyang Center of China Geological Survey, Shenyang 110034, China
2. Key Laboratory of Black Soil Evolution and Ecological Effect, Ministry of Natural Resources, Shenyang 110034, China
3. Key Laboratory of Black Soil Evolution and Ecological Effect of Liaoning Province, Shenyang 110034, China
全文: PDF(4389 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

土壤全氮(TN)、全磷(TP)及氮磷比(N/P)是衡量土壤肥力和土壤质量的重要指标,研究其空间异质性特征对土壤养分管理以及生态环境监测等政策的制订具有重要意义。本文通过土样采集和室内实验分析,结合地统计分析及地理信息系统(GIS)等方法,对建三江地区表层(0~20 cm)土壤中的氮、磷生态化学计量空间变异及影响因素进行研究。结果表明:土壤全氮、全磷以及氮磷比的均值分别为2.49×10-3、0.81×10-3和3.20。土壤全氮和氮磷比空间自相关性很强,而土壤全磷空间自相关性处于中等程度,且均符合指数模型。从空间分布来看,土壤全氮高值区主要呈斑块零星分散在东部、南部和西北地区,而低值区主要在西北和中西部地区零星分布;土壤全磷高值区主要分布在东部和西北地区,中部地区则为低值地区;土壤氮磷比分布则呈镶嵌状,高值区以斑块状分散于中部、南部和东北部地区,而低值区主要位于西北地区。研究区土壤类型、第四系类型和土地利用类型是影响土壤氮、磷生态化学计量特征的重要结构性和随机性因素,而土壤母质和地貌类型则对土壤氮、磷生态化学计量特征影响不大。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
房娜娜
杨泽
刘国栋
戴慧敏
刘凯
关键词 建三江地区土壤氮素土壤磷素生态化学计量空间异质性    
Abstract

The total nitrogen (TN), total phosphorus (TP), and nitrogen/phosphorus ratio (N/P) of soil are important indicators of soil fertility and quality. The study of their spatial heterogeneity is of great significance for the formulation of policies concerning soil nutrient management and ecological environment monitoring. Using methods such as geostatistical analysis and geographic information system (GIS), this study analyzed the spatial variation and influencing factors for the ecological stoichiometry of nitrogen and phosphorus in the surface soil (depth: 0~20 cm) of the Jiansanjiang area through soil sampling and laboratory tests. The results are as follows. The soil in the study area has average TN, TP, and N/P of 2.49×10-3, 0.81×10-3, and 3.20, respectively. The TN and N/P of the soil have high spatial autocorrelations, while the TP of the soil has a moderate spatial autocorrelation, all in line with the index model. Regarding the spatial distribution, zones with high TN content are mainly scattered in the form of patches in the east, south, and northwest of the Jiansanjiang area, while zones with low TN content are mainly scattered in the northwestern, central, and western portions of the area. Zones with high TP content are mainly distributed in the east and northwest, while zones with low TP content are in the central portion. Moreover, the N/P ratio is distributed in a mosaic-like pattern. Specifically, zones with high N/P ratios are distributed in the form of patches in the central, southern, and northeastern portions, while zones with low high N/P ratios are mainly distributed in the northwest. The types of the soil, the Quaternary, and land uses of the study area are important structural and random factors affecting the ecological stoichiometric characteristics of soil nitrogen and phosphorus, while the types of the soil parent materials and landforms have little effect on these characteristics.

Key wordsJiansanjiang area    soil nitrogen    soil phosphorus    ecological stoichiometry    spatial heterogeneity
收稿日期: 2022-01-26      修回日期: 2022-05-16      出版日期: 2022-10-20
ZTFLH:  P591.1  
基金资助:中国地质调查局项目“东北黑土地1:25万土地质量地球化学调查”(121201007000161312);“兴凯湖平原及松辽平原西部土地质量地球化学调查”(DD20190520)
通讯作者: 刘凯
作者简介: 房娜娜(1982-),女,2020年毕业于沈阳农业大学,主要从事土壤生态学研究、土地质量地球化学调查工作。Email:fangnana0373@163.com
引用本文:   
房娜娜, 杨泽, 刘国栋, 戴慧敏, 刘凯. 建三江地区土壤氮磷生态化学计量空间异质性特征及其影响因素分析[J]. 物探与化探, 2022, 46(5): 1121-1131.
FANG Na-Na, YANG Ze, LIU Guo-Dong, DAI Hui-Min, LIU Kai. Spatial heterogeneity and influencing factors of the ecological stoichiometry of soil nitrogen and phosphorus in the Jiansanjiang area. Geophysical and Geochemical Exploration, 2022, 46(5): 1121-1131.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2022.0039      或      https://www.wutanyuhuatan.com/CN/Y2022/V46/I5/1121
Fig.1  建三江地区土壤类型(a)、土地利用(b)及采样布点 (c)
指标 分析方法 检出限 单位
土壤全氮 凯氏定氮法 19 10-6
土壤全磷 X射线荧光光谱法(XRF) 6 10-6
Table 1  各项指标的分析方法及检出限
分析项目 土壤全氮
(TN)
土壤全磷
(TP)
土壤氮磷比
(N/P)
最大值/10-3 7.26 1.64 13.25
最小值/10-3 0.14 0.17 0.42
平均值/10-3 2.49 0.81 3.20
中位数/10-3 2.39 0.80 2.93
标准偏差/10-3 0.69 0.19 1.05
方差 0.48 0.03 1.11
变异系数Cv 0.28 0.23 0.33
偏度 1.26 0.40 1.56
峰度 3.92 1.10 4.77
K-S检验 p<0.05 p<0.05 p<0.05
分布类型 偏正态分布 偏正态分布 偏正态分布
Table 2  土壤氮、磷生态化学计量的描述性统计分析
Fig.2  土壤全氮(a)、全磷(b)和氮磷比(c)的各向同性半方差函数
指标 拟合模型 块金值
C0
基台值
C0+C
变程
A0/km
块金系数
C0/(C0+C)
决定系数
r2
残差平方和
RSS
TN Exponential 0.04800 0.44800 3.6 10.70% 0.535 1.03×10-2
TP Exponential 0.01806 0.03652 14.9 49.50% 0.974 6.424×10-6
N/P Exponential 0.10900 1.06800 3.5 10.20% 0.742 2.46×10-2
Table 3  土壤全氮、全磷和氮磷比半方差函数理论模型及相关参数的地统计学参数
Fig.3  土壤全氮(a)、全磷(b)和氮磷比(c)的各向异性半方差函数
Fig.4  土壤全氮(a)、全磷(b)含量和氮磷比(c)的空间分布
土壤类型 样点数 土壤全氮(TN)/10-3 土壤全磷(TP)/10-3 氮磷比(N/P)
最小值 最大值 均值±
标准差
最小值 最大值 均值±
标准差
最小值 最大值 均值±
标准差
暗棕壤 97 1.20 5.70 2.77±1.01 0.43 1.59 0.90±0.21 1.79 7.39 3.04±0.86
白浆土 1534 0.59 5.43 2.41±0.53 0.25 1.53 0.82±0.16 0.77 7.27 3.01±0.80
草甸土 442 1.00 5.00 2.44±0.73 0 2.00 0.86±0.21 1.16 7.44 2.94±0.93
沼泽土 844 1.06 5.85 2.69±0.78 0.17 1.59 0.75±0.20 1.72 7.60 3.77±1.23
Table 4  建三江地区不同类型土壤全氮、全磷含量和氮磷比变化
Fig.5  不同类型土壤全氮(a)、全磷(b)含量和氮磷比(c)变化
母质类型 样点数 土壤全氮(TN)/10-3 土壤全磷(TP)/10-3 氮磷比(N/P)
最小值 最大值 均值±
标准差
最小值 最大值 均值±
标准差
最小值 最大值 均值±
标准差
冲湖积 2413 0.59 5.73 2.48±0.61 0.22 1.53 0.80±0.17 0.77 7.84 3.22±1.01
冲积 323 0.82 5.85 2.65±1.00 0.17 1.59 0.85±0.22 1.16 7.39 3.25±1.30
湖沼积 175 1.07 5.70 2.66±0.79 0.34 1.59 0.86±0.25 1.79 6.85 3.21±0.94
Table 5  建三江地区不同母质类型土壤全氮、全磷含量和氮磷比变化
Fig.6  建三江地区不同母质类型土壤全氮(a)、全磷(b)含量和氮磷比(c)变化
第四系类型 样点数 土壤全氮(TN)/10-3 土壤全磷(TP)/10-3 氮磷比(N/P)
最小值 最大值 均值±
标准差
最小值 最大值 均值±
标准差
最小值 最大值 均值±
标准差
全新世冲湖积 384 0.81 5.70 2.67±0.80 0.22 1.39 0.69±0.17 1.55 7.60 4.00±1.23
全新世湖沼积 175 1.07 5.70 2.66±0.79 0.34 1.59 0.86±0.25 1.79 6.85 3.21±0.94
全新世冲积 307 0.82 5.85 2.66±1.02 0.17 1.59 0.85±0.22 1.16 7.39 3.29±1.32
晚更新世冲湖积 2029 0.59 5.73 2.44±0.56 0.30 1.53 0.82±0.17 0.77 7.84 3.08±0.89
晚更新世冲积 16 1.33 3.52 2.37±0.59 0.59 1.42 0.93±0.23 1.89 3.37 2.60±0.44
Table 6  建三江地区不同第四系类型土壤全氮、全磷含量和氮磷比变化
Fig.7  建三江地区不同第四系类型土壤全氮(a)、全磷(b)含量和氮磷比(c)变化
A—全新世冲湖积;B—全新世湖沼积;C—全新世冲积;D—晚更新世冲湖积;E—晚更新世冲积
成因类型 样点数 土壤全氮(TN)/10-3 土壤全磷(TP)/10-3 氮磷比(N/P)
最小值 最大值 均值±
标准差
最小值 最大值 均值±
标准差
最小值 最大值 均值±
标准差
冲洪积浅丘状
砂砾石台地
267 0.82 4.92 2.39±0.53 0.42 1.37 0.87±0.18 1.48 5.79 2.78±0.63
冲洪积沙土漫滩阶地 322 0.44 5.73 2.60±1.02 0.33 1.59 0.89±0.23 0.77 7.39 2.97±1.33
冲积—湖积低平原 2259 0.59 5.85 2.48±0.62 0.17 1.53 0.78±0.17 0.77 7.84 3.30±1.04
冲积微起伏低平原 14 1.76 4.42 2.47±0.82 0.63 1.07 0.84±0.14 2.20 4.30 2.92±0.63
构造剥蚀丘陵 102 1.20 5.70 2.72±0.94 0.43 1.59 0.92±0.24 1.96 4.50 2.91±0.61
Table 7  建三江地区不同地貌类型土壤全氮、全磷含量和氮磷比变化
Fig.8  建三江地区不同地貌类型土壤全氮(a)、全磷(b)含量和氮磷比(c)变化
A—冲洪积浅丘状砂砾石台地;B—冲洪积沙土漫滩阶地;C—冲积-湖积低平原;D—冲积微起伏低平原;E—构造剥蚀丘陵
利用类型 样点数 土壤全氮(TN)/10-3 土壤全磷(TP)/10-3 氮磷比(N/P)
最小值 最大值 均值±
标准差
最小值 最大值 均值±
标准差
最小值 最大值 均值±
标准差
草地 87 0.81 5.39 2.41±1.05 0.35 1.48 0.77±0.24 1.40 6.62 3.16±1.00
建设用地 26 1.38 3.38 2.23±0.47 0.62 1.26 0.90±0.17 1.86 3.25 2.50±0.42
旱田 191 0.44 5.85 2.67±0.92 0.33 1.53 0.87±0.22 0.77 7.51 3.24±1.36
林地 223 0.82 5.70 2.57±0.86 0.43 1.59 0.87±0.22 1.48 5.72 2.94±0.65
水田 2310 0.59 5.70 2.50±0.60 0.17 1.59 0.80±0.17 0.77 7.84 3.28±1.02
水域 37 0.90 5.73 2.04±1.00 0.43 1.50 0.88±0.23 1.26 4.18 2.15±0.65
沼泽地 97 0.14 4.83 2.14±0.89 0.34 1.41 0.86±0.21 0.42 6.91 2.53±1.05
Table 8  建三江地区不同土地利用类型土壤全氮、全磷含量和氮磷比变化
Fig.9  建三江地区不同土地利用类型土壤全氮(a)、全磷(b)含量和氮磷比(c)变化
[1] Condron L M, Turner B L, Cade-Menun B J, et al. Chemistry and dynamics of soil organic phosphorus[G]// Sims J T,Sharpley A N. Phosphorus:Agriculture and the Environment, American Society of Agronomy,Crop Science Society of America,Soil Science Society of America,Madison, 2005:87-121.
[2] Bünemann E K, Condron L M. Phosphorus and sulphur cycling in terrestrial Ecosystems[G]//Marschner P,Rengel Z. Nutrient Cycling in Terrestrial Ecosystems. Berlin:Springer-Verlag, 2007:65-92.
[3] 朱兆良. 中国土壤氮素研究[J]. 土壤学报, 2008, 45(5):778-783.
[3] Zhu Z L. Research on soil nitrogen in China[J]. Acta Pedologica Sinica, 2008, 45(5):778 - 783.
[4] 李建辉, 李晓秀, 张汪寿, 等. 基于地统计学的北运河下游土壤养分空间分布[J]. 地理科学, 2011, 31(8):1001-1006.
[4] Li J H, Li X X, Zhang W S, et al. Spatial variation of soil nutrients in downstream districts of Beiyunhe river using geostatistical methods[J]. Scientia Geographica Sinica, 2011, 31(8):1001-1006.
doi: 10.13249/j.cnki.sgs.2011.08.1001
[5] 华孟, 王坚. 土壤物理学[M]. 北京: 北京农业大学出版社, 1993:38-43.
[5] Hua M, Wang J. Soil physics[M]. Beijing: Beijing Agricultural University Press, 1993:38-43.
[6] Ryan J, Ibrikci H, Singh M, et al. Response to residual and currently applied phosphorus in dryland cereal/legumerotations in three Syrian Mediterranean agroecosystems[J]. European Journal of Agronomy, 2008, 28:126-137.
doi: 10.1016/j.eja.2007.06.001
[7] 崔明, 蔡强国, 范昊明. 东北黑土区土壤侵蚀研究进展[J]. 水土保持研究, 2007, 14(5):29-34.
[7] Cui M, Cai Q G, Fan H M. Research progress on the soil erosion in black soil region of Northeast China[J]. Research of Soil and Water Conservation, 2007, 14(5):29-34.
[8] Brady N C, Weil R R. Nature and properties of soils[M]. New York: Macmillan Publishing Company, 2007.
[9] Zhang S L, Yan L L, Huang J, et al. Spatial heterogeneity of soil C:N ratio in a Mollisol watershed of Northeast China[J]. Land Degradation and Development, 2016, 27(2):295-304.
doi: 10.1002/ldr.2427
[10] Zhang S L, Zhang X Y, Ted H, et al. Influence of topography and land management on soil nutrients variability in Northeast China[J]. Nutrient Cycling in Agroecosystems, 2011, 89(3):427-438.
doi: 10.1007/s10705-010-9406-0
[11] Withers P J A, Hodgkinson R A. The effect of farming practices on phosphorus transfer to a headwater stream in England[J]. Agriculture Ecosystems Environment, 2009, 131(3):347-55.
doi: 10.1016/j.agee.2009.02.009
[12] Zhang X Y, Sui Y Y, Zhang X D, et al. Spatial variability of nutrient properties in black soil of Northeast China[J]. Pedosphere, 2007, 17(1):19-29.
doi: 10.1016/S1002-0160(07)60003-4
[13] Zhang S L, Ted H, Zhang X Y, et al. Spatial distribution of soil nutrient at depth in black soil of Northeast China:A case study of soil available phosphorus and total phosphorus[J]. Journal of Soils and Sediments, 2014, 14(11):1775-1789.
doi: 10.1007/s11368-014-0935-z
[14] Chatterjee S, Santra P, Majumdar K, et al. Geostatistical approach for management of soil nutrients with special emphasis on different forms of potassium considering their spatial variation in intensive cropping system of West Bengal,India[J]. Environmental Monitoring and Assessment, 2015, 187(4):1-17.
doi: 10.1007/s10661-014-4167-x
[15] Wang Y Q, Zhang X C, Huang C Q. Spatial variability of soil total nitrogen and soil total phosphorus under different land uses in a small watershed on the Loess Plateau,China[J]. Geoderma, 2009, 150(1/2):141-149.
doi: 10.1016/j.geoderma.2009.01.021
[16] 高君亮, 罗凤敏, 高永, 等. 农牧交错带不同土地利用类型土壤碳氮磷生态化学计量特征[J]. 生态学报, 2019, 39(15):5594-5602.
[16] Gao J L, Luo F M, Gao Y, et al. Ecological soil C,N,and P stoichiometry of different land use patterns in the agriculture-pasture ecotone of Northern China[J]. Acta Ecologica Sinica, 2019, 39(15):5594-5602.
[17] Elser J J, Sterner R W, Gorokova E, et al. Biological stoiciometry from genes to ecosystems[J]. Ecology Letters, 2000, 3(6):540-550.
doi: 10.1046/j.1461-0248.2000.00185.x
[18] 李从娟, 雷加强, 徐新文, 等. 塔克拉玛干沙漠腹地人工植被及土壤CNP的化学计量特征[J]. 生态学报, 2013, 33(18):5760-5767.
[18] Li C J, Lei J Q, Xu X W, et al. The stoichiometric characteristics of C,N,P for artificial plants and soil in the hinterland of Taklimakan Desert[J]. Acta Ecologica Sinica, 2013, 33(18):5760-5767.
doi: 10.5846/stxb201304300872
[19] 朱永青, 崔云霞, 李伟迪, 等. 太滆运河流域不同用地方式下土壤pH值、有机质及氮磷含量特征分析[J]. 生态与农村环境学报, 2020, 36(2):171-178.
[19] Zhu Y Q, Cui Y X, Li W D, et al. Analysis of soil pH,organic matter,nitrogen and phosphate characteristics under different land use types in Taige Canal Valley[J]. Journal of Ecology and Rural Environment, 2020, 36(2):171-178.
[20] 马泉来, 王小玉, 赵曼宇, 等. 黑土区小流域土壤氮磷生态化学计量空间分异特征[J]. 生态与农村环境学报, 2020, 36(10):1325-1332.
[20] Ma Q L, Wang X Y, Zhao M Y, et al. Spatial variability of ecological stoichiometry of soil nitrogen and phosphorus in a mollisol watershed of China[J]. Journal of Ecology and Rural Environment, 2020, 36(10):1325-1332.
[21] DZ/T 0258—2014多目标区域地球化学调查规范(1:250 000)[S]. 北京: 中国标准出版社, 2014:3-21.
[21] DZ/T 0258—2014 Specification for multi-objective regional geochemical survey (1:250 000) [S]. Beijing: Standards Press of China, 2014:3-21.
[22] Yost R S, Uehara G, Fox R L. Geostatistical analysis of soil chemical properties of large areas.I. Semi-variograms[J]. Soil Science Society of America Journal, 1982, 46:1028-1032.
doi: 10.2136/sssaj1982.03615995004600050028x
[23] Robertson G P. Geostatistics for the environmental sciences[M]. Plainwell: Gamma Design Software, 2008.
[24] DZ/T 0259—2016土地质量地球化学评价规范[S]. 北京: 地质出版社, 2016:3-21.
[24] DZ/T 0259—2016 Specification of land quality geochemical assessment[S]. Beijing: Geological Publishing House, 2016:3-21.
[25] 孙忠祥, 李勇, 赵云泽, 等. 旱作区土壤有机碳密度空间分布特征与其驱动力分析[J]. 农业机械学报, 2019, 50(1):255-262.
[25] Sun Z X, Li Y, Zhao Y Z, et al. Analysis on spatial distribution characteristics and driving forces of soil organic carbon density in dry farming region[J]. Transactions of the Chinese Society for Agricultural Machinery. 2019, 50(1):255-262.
[26] 吴崇书, 章明奎. 长期不同施肥对茶园土壤碳氮磷构成的影响[J]. 土壤通报, 2015, 46(3):578-583.
[26] Wu C S, Zhang M K. Effects of long-term different fertilization on carbon,nitrogen and phosphorus pools in tea garden soils[J]. Chinese Journal of Soil Science, 2015, 46(3):578-583.
[27] Tian H Q, Chen G S, Zhang C, et al. Pattern and variation of C:N:P ratios in China's soils:A synthesis of observational data. Biogeochemistry, 2010, 98 (s1-3):139-151.
doi: 10.1007/s10533-009-9382-0
[28] 江叶枫, 叶英聪, 郭熙, 等. 江西省耕地土壤氮磷生态化学计量空间变异特征及其影响因素[J]. 土壤学报, 2017, 54(6):1527-1539.
[28] Jiang Y F, Ye Y C, Guo X, et al. Spatial variability of ecological stoichiometry of soil nitrogen and phosphorus in farmlands of Jiangxi Province and its influencing factors[J]. Acta Pedologica Sinica, 2017, 54(6):1527-1539.
[29] 卓志清, 李勇, 兴安, 等. 东北旱作区土壤碳氮磷生态化学计量特征及其影响因素[J]. 农业机械学报, 2019, 50(10):259-268,336.
[29] Zhuo Z Q, Li Y, Xing A, et al. Characteristic of ecological stoichiometry of soil C,N and P and its influencing factors in dry farming region of Northeast China[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(10):259-268,336.
[30] Smith V H. Effects of nitrogen:Phosphorus supply ratios on nitrogen fixation in agricultural and pastoral ecosystems[J]. Biogeochemistry, 1992, 18(1):19-35.
doi: 10.1007/BF00000424
[31] 胡玉福, 邓良基, 张世熔, 等. 川中丘陵区城墙岩群和蓬莱镇组紫色岩上土壤性质研究[J]. 土壤通报, 2007, 38(6):1076-1080.
[31] Hu Y F, Deng L J, Zhang S R, et al. The soil proper ties of soils developed from K1cg and J3p in centr al hill region of Sichuan basin[J]. Chinese Journal of Soil Science, 2007, 38(6):1076-1080.
[32] 罗由林, 李启权, 王昌全, 等. 近30年川中丘陵区不同土地利用方式土壤碳氮磷生态化学计量特征变化[J]. 土壤, 2016, 48(4):726-733.
[32] Luo Y L, Li Q Q, Wang C Q, et al. Last 30a changes of C,N and P ecological stoichiometry of different land use types in hilly area of mid-Sichuan basin,Southwest China[J]. Soils, 2016, 48(4):726-733.
[33] 张晗, 欧阳真程, 赵小敏, 等. 江西省耕地土壤氮素空间变异特征及其主控因素[J]. 水土保持学报, 2018, 32(5):1-9.
[33] Zhang H, Ouyang Z C, Zhao X M, et al. spatial variation of soil nitrogen and its main controlling factors in cultivated land of Jiangxi Province[J]. Journal of Soil and Water Conservation, 2018, 32(5):1-9.
[34] 杨贺平. 松嫩平原中南部黑土氮流失程度及分布特征研究[J]. 地质与资源, 2021, 30(5), 577-582.
[34] Yang H P. Nitrogen loss degree and distribution characteristics of black soil area in south-central Songnen Plain[J]. Geology and Resources, 2021, 30(5), 577-582.
[1] 刘国栋, 李禄军, 戴慧敏, 许江, 刘凯, 张一鶴, 杨泽. 松辽平原土壤碳库变化及其原因分析[J]. 物探与化探, 2021, 45(5): 1109-1120.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com