Please wait a minute...
E-mail Alert Rss
 
物探与化探  2022, Vol. 46 Issue (5): 1087-1096    DOI: 10.11720/wtyht.2022.0035
  东北黑土地地球化学调查专栏 本期目录 | 过刊浏览 | 高级检索 |
黑龙江省逊克平原土壤质量及绿色产地适宜性评价
张哲寰1,2,3(), 刘凯1,2,3, 赵君4, 梁帅1,2,3, 魏明辉1,2,3, 刘洋1,2,3
1.中国地质调查局 沈阳地质调查中心,辽宁 沈阳 110034
2.自然资源部 黑土地演化与生态效应重点实验室,辽宁 沈阳 110034
3.辽宁省黑土地演化与生态效应重点实验室,辽宁 沈阳 110034
4.中国地质调查局 西安地质调查中心,陕西 西安 710054
Evaluation of the soil quality and the suitability for green food-producing areas in the Xunke Plain, Heilongjiang Province
ZHANG Zhe-Huan1,2,3(), LIU Kai1,2,3, ZHAO Jun4, LIANG Shuai1,2,3, WEI Ming-Hui1,2,3, LIU Yang1,2,3
1. Shenyang Center of China Geological Survey, Shenyang 110034, China
2. Key Laboratory for Evolution and Ecological Effect in Black Land, Ministry of Natural Resources, Shenyang 110034, China
3. Key Laboratory for Evolution and Ecological Effect in Black Land of Liaoning Province, Shenyang 110034, China
4. Xi'an Center of Geological Survey, CGS, Xi'an 710054, China
全文: PDF(3639 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

利用1:25万土地质量地球化学调查数据,根据《土地质量地球化学评价规范》和《土壤环境质量农用地土壤污染风险管控标准(试行)》,对逊克平原土壤质量和绿色产地土壤环境质量进行评价。结果显示: 逊克平原土地肥沃,环境优良,适合于发展绿色农业。①逊克平原土壤养分N、P、K、有机质、CaO、MgO、Fe2O3、S、B、Zn、Mn、Cu、Mo、Co、Ge、V 16项中,CaO、MgO、Cu、Zn为较缺乏,Ge、B缺乏,其他指标均为丰富和较丰富。土壤养分综合等级以丰富和较丰富为主,面积分别为6 088 km2和4 984 km2,分别占全区面积的44.58%和36.5%。②土壤环境质量综合等级以无风险为主,面积13 600 km2,占调查区面积的99.59%; 风险可控区面积56 km2,占0.41%。③土壤质量综合等级以优质土壤为主,面积为11 028 km2,占全区面积的80.76%; 良好土壤面积2 072 km2,占全区的15.17%; 中等土地面积556 km2,占4.07%,没有差等(四等)和劣等(五等)土壤。④逊克平原满足一级(AA级)绿色产地要求的土壤面积为13 396.45 km2,占全区面积的98.1%; 满足二级(A级)绿色产地要求的土壤面积为148 km2,占全区面积的1.1%; 不符合绿色食品产地要求的土壤面积为112 km2,占全区面积的0.8%。逊克平原土壤养分充足,环境清洁,开发绿色食品产地潜力巨大。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张哲寰
刘凯
赵君
梁帅
魏明辉
刘洋
关键词 土壤质量绿色产地逊克平原黑龙江省    
Abstract

As per the Specification of Land Quality Geochemical Assessment and the Soil Environment Quality-Risk Control Standard for Soil Contamination of Agricultural Land (Trial), this study evaluated the soil quality of the Xunke Plain and the soil environmental quality of the plain as green food-producing areas using the 1:250 000 geochemical survey data of land quality. The results show that the Xunke Plain has fertile land and an excellent environment and is suitable for the development of green agriculture. ①The Xunke Plain is rich or highly rich in 16 soil nutrients (i.e., N, P, K, organic matter, CaO, MgO, Fe2O3, S, B, Zn, Mn, Cu, Mo, Co, Ge, and V) except for CaO, MgO, Cu, and Zn, which are deficient, and Ge and B, which are highly deficient. This plain mainly has soil nutrients of highly rich and rich comprehensive grades, which cover an area of 6,088 km2 and 4,984 km2, respectively, accounting for 44.58% and 36.5% of the total area of the plain, respectively. ②This plain mainly has the soil environmental quality of risk-free comprehensive grade, which covers an area of 13,600 km2, accounting for 99.59% of the total area of the plain. The portion with controllable risk covers an area of 56 km2, accounting for 0.41%. ③This plain mainly has soil quality of excellent comprehensive grade, which covers an area of 11,028 km2, accounting for 80.76% of the total area of the plain. The land portion with high-quality soil quality has an area of 2,072 km2, accounting for 15.17%, and that with moderate soil quality covers an area of 556 km2, accounting for 4.07%. There is no poor (fourth grade) or inferior (fifth grade) soil in the plain. ④The soil of the Xunke Plain meeting the requirements of Class-I (AA) and Class-II (A) green food-producing areas has an area of 13,396.45 km2 and 148 km2, respectively, accounting for 98.1% and 1.1% of the total area of the plain, respectively. The soil that is unsuitable to be used as green food-producing areas has an area of 112 km2, accounting for 0.8% of the total area of the plain. Overall, the Xunke Plain enjoys sufficient soil nutrients and a clean environment and has great potential for developing as green food-producing areas.

Key wordssoil quality    green origin    Sunke Plain    Heilongjiang Province
收稿日期: 2022-01-25      修回日期: 2022-06-12      出版日期: 2022-10-20
ZTFLH:  P632  
基金资助:中国地质调查局项目“东北黑土地1:25万土地质量地球化学调查”(121201007000161312);“兴凯湖平原及松辽平原西部土地质量地球化学调查”(DD20190520)
作者简介: 张哲寰(1968-),女,高级工程师,主要从事环境地质研究工作。Email:601984163@qq.com
引用本文:   
张哲寰, 刘凯, 赵君, 梁帅, 魏明辉, 刘洋. 黑龙江省逊克平原土壤质量及绿色产地适宜性评价[J]. 物探与化探, 2022, 46(5): 1087-1096.
ZHANG Zhe-Huan, LIU Kai, ZHAO Jun, LIANG Shuai, WEI Ming-Hui, LIU Yang. Evaluation of the soil quality and the suitability for green food-producing areas in the Xunke Plain, Heilongjiang Province. Geophysical and Geochemical Exploration, 2022, 46(5): 1087-1096.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2022.0035      或      https://www.wutanyuhuatan.com/CN/Y2022/V46/I5/1087
Fig.1  研究区地质图
指标 检出限 分析方法 指标 检出限 分析方法
Cr 1.8 X射线荧光光谱法(XRF) Zn 0.3 电感耦合等离子体发射光谱法(ICP-OES)
Cu 0.9 X射线荧光光谱法(XRF) TFe2O3 0.01 电感耦合等离子体发射光谱法(ICP-OES)
P 6 X射线荧光光谱法(XRF) CaO 0.02 电感耦合等离子体发射光谱法(ICP-OES)
Pb 1 X射线荧光光谱法(XRF) MgO 0.02 电感耦合等离子体发射光谱法(ICP-OES)
V 4 X射线荧光光谱法(XRF) Co 0.6 电感耦合等离子体发射光谱法(ICP-OES)
K2O 0.02 X射线荧光光谱法(XRF) Mn 0.3 电感耦合等离子体发射光谱法(ICP-OES)
Cu 0.9 X射线荧光光谱法(XRF) Ni 1.5 电感耦合等离子体发射光谱法(ICP-OES)
As 0.5 原子荧光光度法(AFS) S 18 高频燃烧红外吸收法(CS)
Hg 0.0003 原子荧光光度法(AFS) Cd 0.02 等离子体质谱法(ICP-MS)
B 1 发射光谱法(AES) Ge 0.09 等离子体质谱法(ICP-MS)
Corg 0.03 容量法(VOL) Mo 0.06 等离子体质谱法(ICP-MS)
N 19 凯氏定氮法
Table 1  土壤中各指标分析方法及检出限
等级 一级
(丰富)
二级
(较丰富)
三级
(中等)
四级
(较缺乏)
五级
(缺乏)
?养综 ≥4.5 <3.5~4.5 <3.5~2.5 <2.5~1.5 <1.5
Table 2  土壤养分地球化学综合等级划分
环境等级 一等(无风险) 二等(风险可控) 三等(风险较高)
污染风险 无风险 风险可控 风险较高
划分方法 CiSi Si﹤CiGi Ci>Gi
Table 3  重金属单元素污染风险等级划分标准
土壤质量 环境综合等级
一等
(无风险)
二等
(风险可控)
三等
(风险较高)
养分
综合
等级
一等(丰富) 一等 三等 五等
二等(较丰富) 一等 三等 五等
三等(中等) 二等 三等 五等
四等(较缺乏) 三等 三等 五等
五等(缺乏) 四等 四等 五等
Table 4  土壤质量地球化学综合等级
项目 旱田 水田
pH<
6.5
6.5≤pH
≤7.5
pH>
7.5
pH<
6.5
6.5≤pH
≤7.5
pH>
7.5
≤0.30 ≤0.30 ≤0.40 ≤0.30 ≤0.30 ≤0.40
≤0.25 ≤0.30 ≤0.35 ≤0.30 ≤0.40 ≤0.40
≤25 ≤20 ≤20 ≤20 ≤20 ≤15
≤50 ≤50 ≤50 ≤50 ≤50 ≤50
≤120 ≤120 ≤120 ≤120 ≤120 ≤120
≤50 ≤60 ≤60 ≤50 ≤60 ≤60
Table 5  绿色食品产地土壤环境质量限值
项目 级别 旱田 水田
>15 >25
有机质/10-3 10~15 20~25
<10 <20
>1.0 >1.2
全氮/10-3 0.8~1.0 1.0~1.2
<0.8 <1.0
Table 6  土壤肥力等级划分
指标 含量 土壤质量
范围值/10-3 平均值/10-3 等级
含义
一等
丰富
二等
较丰富
三等
中等
四等
较缺乏
五等
缺乏
N 0.29~4.75 2.31 面积/km2 8460 3032 1684 380 100
比例/% 61.95 22.2 12.33 2.78 0.73
P 0.20~1.91 0.98 面积/km2 6604 3112 2188 1408 344
比例/% 48.36 22.79 16.02 10.31 2.52
K 15.85~24.64 20.26 面积/km2 228 7300 6108 20 0
比例/% 1.67 53.46 44.73 0.15 0
有机质 1.16~103.96 47.37 面积/km2 8424 2832 1792 544 64
比例/% 61.69 20.74 13.12 3.98 0.47
Table 7  土壤大量营养元素(指标)含量与评价结果统计
指标 含量 土壤质量
范围值 平均值 等级
含义
一等
丰富
二等
较丰富
三等
中等
四等
较缺乏
五等
缺乏
CaO 0.30~1.74 0.95 面积/km2 0 0 2880 10684 92
比例/% 0 0 21.09 78.24 0.67
MgO 0.30~1.49 0.89 面积/km2 0 20 608 10344 2684
比例/% 0 0.15 4.45 75.75 19.65
S 44~551.5 270.93 面积/ km2 3224 3392 2764 2200 2076
比例/% 23.61 24.84 20.24 16.11 15.2
Table 8  土壤中量营养元素含量与评价结果统计
指标 含量 土壤质量 超出上限
范围值 平均值 等级
含义
一等
丰富
二等
较丰富
三等
中等
四等
较缺乏
五等
缺乏
Fe2O3 1.41~6.57 4.12 面积/km2 852 3965 2680 3108 3052
比例/% 6.24 29.03 19.63 22.76 22.35
Mn 180.78~1834 998.27 面积/km2 11004 852 540 284 104 872
比例/% 80.58 6.24 3.95 2.08 0.76 6.39
Cu 5.1~28.6 16.53 面积/km2 45 236 1692 5951 5728 4
比例/% 0.32 1.73 12.39 43.59 41.94 0.03
Zn 25.21~104.76 63.45 面积/km2 1348 2492 3300 4316 2180 20
比例/% 9.87 18.25 24.17 31.61 15.96 0.15
B 12.7~46.21 29.03 面积 4 0 72 5380 8200
比例% 0.03 0 0.53 39.40 60.05
Mo 0.29~1.61 0.91 面积/km2 8028 4100 1040 380 68 40
比例/% 58.79 30.02 7.62 2.78 0.50 0.29
Co 5.47~19.36 12.34 面积/km2 1676 4000 4428 2956 0.50
比例/% 12.27 29.29 32.43 21.65 4.36
V 37.8~118.5 78.29 面积/km2 1648 3416 3088 3340 2164
比例/% 12.07 25.01 22.61 24.46 15.85
Ge 0.92~1.57 1.25 面积/km2 212 876 3104 4840 4624
比例/% 1.55 6.41 22.73 35.44 33.86
Table 9  土壤微量营养元素含量及评价结果
等级 一等 二等 三等 四等 五等
含义 丰富 较丰富 中等 较缺乏 缺乏
面积/ km2 6088 4984 2084 500 0
比例/% 44.58 36.5 15.26 3.66 0
Table 10  表层土壤养分综合评价结果
Fig.2  逊克平原土壤养分综合等级评价
元素 一等(无风险) 二等(风险可控)
面积/km2 比例/% 面积/km2 比例/%
Ni 13652 99.97 4 0.03
Hg 13656 100
As 13632 99.82 24 0.18
Pb 13656 100
Cr 13652 99.97 4 0.03
Cu 13652 99.97 4 0.03
Cd 13636 99.85 20 0.15
Zn 13636 99.85 20 0.15
环境综合 13600 99.59 56 0.41
Table 11  土壤环境单指标评价结果
Fig.3  逊克平原土壤环境综合等级评价
Fig.4  逊克平原土壤质量综合等级评价
Fig.5  逊克平原绿色产地环境质量评价
[1] 倪绍祥. 土地类型与土地评价概论[M]. 北京: 高等教育出版社, 1999:56-307.
[1] Ni S X. Introduction to land types and land evaluation[M]. Beijing: Higher Education Press, 1999:56-307.
[2] 任家强, 汪景宽, 杨晓波, 等. 辽河中下游平原土地质量地球化学评价及空间分布研究[J]. 沈阳大学学报, 2011, 37(4):208-211.
[2] Ren J Q, Wang J K, Yang X B, et al. Geochemical evaluation and spatial distribution of land quality in the middle and lower reaches of Liaohe Plain[J]. Journal of Shenyang University, 2011, 37(4): 208-211.
[3] 潘志恒, 李鑫, 白荣杰, 等. 长春经济区土壤地球化学特征[J]. 地质与资源, 2020, 29(6):564-569.
[3] Pan Z H, Li X, Bai R J. Geochemical characteristics of soil in Changchun Economic Zone[J]. Geology and Resources, 2020, 29(6):564-569.
[4] 杨忠芳. 现代环境地球化学[M]. 北京: 地质出版社,1999.
[4] Yang Z F. Modern environmental geochemistry[M]. Beijing: Geological Publishing House, 1999.
[5] 孙淑梅, 张连志, 闰冬. 吉林省德惠—农安地区土地质量地球化学评估[J]. 现代地质, 2008, 22(6):998-1002.
[5] Sun S M, Zhang L Z, Run D. Geochemical evaluation of land quality in Dehui-Nong'an area of Jilin Province[J]. Modern Geology, 2008, 22(6):998-1002.
[6] 刘国栋, 崔玉军, 刘立芬, 等. 土地质量地球化学评价方法研究与应用:以黑龙江省宏胜镇为例[J]. 现代地质, 2017, 31(1):167-176.
[6] Liu G D, Cui Y J, Liu L F, et al. Research and application of geochemical evaluation method of land quality:A case study of Hongsheng Town, Heilongjiang Province[J]. Modern Geology, 2017, 31(1):167-176.
[7] 梁红霞, 史春鸿. 当涂县土地质量地球化学评估[J]. 安徽地质, 2014, 24(2):122-126.
[7] Liang H X, Shi C H. Geochemical evaluation of land quality in Dangtu County[J]. Geology of Anhui, 2014, 24(2):122-126.
[8] 于成广, 杨忠芳, 杨晓波, 等. 土地质量评估方法研究与应用:以盘锦市为例[J]. 现代地质, 2012, 26(5):873-878.
[8] Yu C G, Yang Z F, Yang X B, et al. Research and application of land quality evaluation method:A case study of Panjin City[J]. Modern Geology, 2012, 26(5):873-878.
[9] 刘军保, 黄春雷, 岑静. 土地质量地球化学评估方法研究:以慈溪市为例[J]. 资源调查与环境, 2010, 21(1):50-59.
[9] Liu J B, Huang C L, Cen J. Study on geochemical evaluation method of land quality:A case study of Cixi City[J]. Resource Survey and Environment, 2010, 21(1):50-59.
[10] 王增辉, 王存龙, 赵西强, 等. 山东省黄河下游流域土地质量地球化学评估及方法研究[J]. 物探与化探, 2013, 37(4):743-748.
[10] Wang Z H, Wang C L, Zhao X Q, et al. Geochemical evaluation and method of land quality in the lower Yellow River Basin of Shandong Province[J]. Geophysical and Geochemical Exploration, 2013, 37(4):743-748.
[11] 戴慧敏, 刘凯, 宋运红, 等. 东北地区黑土退化地球化学指示与退化强度[J]. 地质与资源, 2020, 29(6):510-517.
[11] Dai H M, Liu K, Song Y H, et al. Geochemical indicators and degradation intensity of black soil degradation in Northeast China[J]. Geology and Resources, 2020, 29(6):510-517.
[12] NY/T 391—2021绿色食品产地环境质量[S].
[12] NY/T 391—2021 Environmental quality of green food producing areas[S].
[13] NY/T 1054—2021绿色食品产地环境调查、监测与评价规范[S].
[13] NY/T 1054—2021 Code for environmental investigation, monitoring and evaluation of green food producing areas[S].
[14] NY/T 5295—2015 无公害农产品产地环境评价准则[S].
[14] NY/T 5295—2015 Environmental assessment criteria for producing areas of pollution-free agricultural products[S].
[15] 耿增超, 戴伟. 土壤学[M]. 北京: 科学出版社, 2011:146.
[15] Geng Z C, Dai W. Soil science[M]. Beijing: Science Press, 2011:146.
[16] 全国农业技术推广中心. 东北玉米优势区耕地质量专题评价[M]. 北京: 中国农业出版社, 2017:129.
[16] National Agricultural Technology Extension Center. Special evaluation of cultivated land quality in maize dominant areas of Northeast China[M]. Beijing: China Agricultural Press, 2017:129.
[17] 浙江农业大学. 植物营养与肥料[M]. 北京: 中国农业出版社, 1991:123-130.
[17] Zhejiang Agriculture University. Plants nutrition and fertilizer[M]. Beijing: China Agricultural Press, 1991:123-130.
[18] 张俊伶, 张福锁, 廖红, 等. 植物营养学[M]. 北京: 中国农业大学出版社, 2021:112.
[18] Zhang J L, Zhang F S, Liao H, et al. Plantsnutrition[M]. Beijing: China Agriculture University Press, 2021:112.
[19] 蔡庆生. 植物生理学[M]. 北京: 中国农业大学出版社, 2014:121-122.
[19] Cai Q S. Plant physiology[M]. Beijing: China Agricultural University Press, 2014:121-122.
[20] 刘万华, 邵凤城, 刘淑君, 等. 武清区农田土壤缺硼现状与补硼措施[J]. 天津农业科学, 2009, 15(增刊):5-7.
[20] Liu W H, Shao F C, Liu S J, et al. Current situation of boron deficiency in farmland soil and boron supplement measures in Wuqing District[J]. Tianjin Agricultural Science, 2009, 15(S):5-7.
[21] 蒋德安. 植物生理学实验指导[M]. 成都: 成都科技大学出版社, 1999:22-23.
[21] Jiang D A. Experimental guidance of plant physiology[M]. Chengdu: Chengdu University of Science and Technology Press, 1999:22-23.
[22] 唐明灯, 吴龙华, 李宁, 等. 修复植物薷堆肥对缺铜土壤上冬小麦生长和铜胡收的初步研究[J]. 土壤, 2006, 38(5):614-618.
[22] Tang M D, Wu L H, Li N, et al. Preliminary study on the effects of Repairing Plant Elsholtzia compost on the growth and copper harvest of Winter Wheat in copper deficient soil[J]. Soil, 2006, 38(5):614-618.
[23] 郑利伟. 土壤缺锌作物典型症状及综合防治措施[J]. 现代农业科技, 2009(7):185.
[23] Zheng L W. Typical symptoms and comprehensive control measures of soil zinc deficiency crops[J]. Modern Agricultural Science and technology, 2009(7):185.
[24] 徐德海. 化学元素知识简明手册[M]. 北京: 化学工业出版社, 2012.
[24] Xu D H. Concise handbook of chemical element knowledge[M]. Beijing: Chemical Industry Press, 2012.
[25] 叶铁林, 徐宝财. 化学元素的奇妙世界[M]. 北京: 化学工业出版社, 2016.
[25] Ye T L, Xu B C. The wonderful world of chemical elements[M]. Beijing: Chemical Industry Press, 2016.
[26] 袁宏, 赵利, 王茂丽, 等. 西藏拉萨至曲水拉萨河沿岸农用地土壤硒锗空间分布与评价[J]. 土壤, 2020, 52(2):427-432.
[26] Yuan H, Zhao L, Wang M L, et al. Spatial distribution and evaluation of selenium and germanium in agricultural soil along Lhasa River from Lhasa to Qushui, Tibet[J]. Soil, 2020, 52(2):427-432.
[1] 疏志明 王雄军 赖健清 胡荣国. 分形理论在太原盆地土壤重金属元素分析中的应用[J]. 物探与化探, 2009, 33(2): 157-160.
[2] 蔡朝阳 孙德有 吴国学. MapGIS与Surfer相结合在黑河市化探工作中的应用[J]. 物探与化探, 2009, 33(2): 220-223.
[3] 胡忠贤, 程志中, 王学求. 黑龙江省中部森林沼泽区金在土壤A层中的富集规律[J]. 物探与化探, 2008, 32(1): 33-35.
[4] 庞绪贵, 姜相洪, 李建华, 张英明, 胡艳蕾. 济南—济阳地区土壤地球化学特征[J]. 物探与化探, 2004, 28(3): 253-256.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com