Please wait a minute...
E-mail Alert Rss
 
物探与化探  2019, Vol. 43 Issue (5): 1097-1104    DOI: 10.11720/wtyht.2019.0095
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
阵列侧向测井正演响应分析及环境因素快速校正方法研究
冯进1, 倪小威2, 杨清1, 管耀1, 刘迪仁3,4()
1. 中海石油(中国)有限公司深圳分公司,广东 深圳 518054
2. 塔里木油田分公司,新疆 库尔勒 841000
3. 长江大学 油气资源与勘探技术教育部重点实验室,湖北 武汉 430100
4. 长江大学 地球物理与石油资源学院,湖北 武汉 430100
Forward analysis of array laterolog and rapid correction of environmental factors
Jin FENG1, Xiao-Wei NI2, Qing YANG1, Yao GUAN1, Di-Ren LIU3,4()
1. Shenzhen Branch of CNOOC (China) Co., Ltd., Shenzhen 518054, China
2. Tarim Oilfield Company,CNPC,Korla 841000,China
3. Key Laboratory of Exploration Technologies for Oil and Gas Resources of Ministry of Education, Yangtze University,Wuhan 430100,China
4. College of Geophysics and Oil Resources, Yangtze University, Wuhan 430100, China
全文: PDF(0 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

电阻率测井资料是定性划分油气层和定量计算含油饱和度的重要依据,但电阻率测井资料易受到环境因素的影响,造成资料失真。本文以阵列侧向测井仪器EALT(elis array laterolog tool)为例(测量MLR1-MLR4四条视电阻率曲线),基于有限元数值模拟方法,研究了井眼、围岩、泥浆侵入对其响应的影响。计算结果表明,MLR1、MLR2、MLR3当井径大于8 in后即明显受到井眼影响,MLR4基本不受井径的影响,在高阻泥浆环境中测量结果严重失真;MLR1、MLR2、MLR3、MLR4当层厚小于0.4 m时受层厚影响严重;围岩电阻率与目的层电阻率差别越大,ELAT响应受到影响越大;MLR1-MLR3在侵入半径小于30 in时受其影响较大,地层电阻率与侵入带电阻率比值分别达到5、10、100后,视电阻率失真程度可达50%以上。基于正演分析,计算绘制了井眼、围岩、泥浆侵入影响校正图版,并针对较复杂的围岩校正图版提出了快速校正方法,可对阵列侧向测井资料环境因素校正提供一定参考。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
冯进
倪小威
杨清
管耀
刘迪仁
关键词 阵列侧向测井井眼围岩泥浆侵入校正图版    
Abstract

Resistivity logging data constitute an important basis for qualitative division of oil and gas reservoirs and quantitative calculation of oil saturation. However, resistivity logging data are vulnerable to environmental factors, which results in distortion of resistivity logging data. Taking array laterolog instrument as an example and based on finite element numerical simulation method, te authors studied the influence of borehole, surrounding rock and mud intrusion on its response. The results show that MLR1, MLR2 and MLR3 are obviously affected by borehole diameter when the borehole diameter is greater than 8 minutes, MLR4 is basically not affected by borehole diameter, and EALT results in high resistance mud environment are seriously distorted. MLR1, MLR2, MLR3 and MLR4 are seriously affected by the thickness of the layer when the thickness of the layer is less than 0.4m. The larger the difference of resistivity between the surrounding rock and the target layer, the greater the influence of ELAT response. When the invasion radius is less than 30 minutes, R1-MLR3 is greatly affected. When the ratio of formation resistivity to invasion zone resistivity reaches 5,10,100, the apparent resistivity distortion can be higher than 50%. Based on forward analysis, the authors drew the correction chart of EALT wellbore, surrounding rock and mud invasion and propose a fast correction method for the complex correction chart of surrounding rock, which can provide some reference for the correction of environmental factors of EALT logging data.

Key wordsarray laterolog    borehole    surrounding rock    mud invasion    correction chart
收稿日期: 2019-02-25      出版日期: 2019-10-25
:  P631  
基金资助:国家重大专项项目“南海东部海域勘探新领域及关键技术”(2016ZX05024-004-006);国家重点研发计划项目(2018YFC0603300)
通讯作者: 刘迪仁
作者简介: 冯进(1972-),男,高级工程师,硕士,现主要从事地球物理测井相关工作。Email: fengjin@cnooc.com.cn
引用本文:   
冯进, 倪小威, 杨清, 管耀, 刘迪仁. 阵列侧向测井正演响应分析及环境因素快速校正方法研究[J]. 物探与化探, 2019, 43(5): 1097-1104.
Jin FENG, Xiao-Wei NI, Qing YANG, Yao GUAN, Di-Ren LIU. Forward analysis of array laterolog and rapid correction of environmental factors. Geophysical and Geochemical Exploration, 2019, 43(5): 1097-1104.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2019.0095      或      https://www.wutanyuhuatan.com/CN/Y2019/V43/I5/1097
Fig.1  电极系结构
Fig.2  地层模型
Fig.3  井眼的影响
a—井径的影响;b—泥浆电阻率的影响
Fig.4  井眼校正图版
Fig.5  围岩的影响
a—层厚的影响; b—围岩电阻率的影响
Fig.6  围岩校正图版
Rt/Rs 0.1 0.2 0.5 2 4 6 10 20 50
a1 -75.74 -35.00 -1.42 -14.32 -23.43 -19.44 -5.69 16.28 28.54
a2 85.29 44.01 6.73 9.42 18.53 17.66 9.94 -4.43 -14.15
a3 -33.00 -18.80 -4.66 -0.56 -2.53 -2.75 -1.70 0.71 2.48
a4 5.70 3.91 1.95 0.56 0.41 0.34 0.21 0.03 -0.11
R2 0.98 0.97 0.99 1 0.96 0.99 0.97 0.99 1
Table 1  MLR1围岩校正系数(0.1 m≤H≤0.4 m)
Rt/Rs 0.1 0.2 0.5 2 4 6 10 20 50
a1 10.07 5.29 1.76 -2.28 -6.46 -10.35 -17.21 -29.20 -41.71
a2 -29.26 -15.38 -5.11 6.62 18.87 30.30 50.49 85.97 124.10
a3 29.83 15.68 5.23 -6.95 -20.08 -32.40 -54.24 -92.93 -136.10
a4 -12.29 -6.42 -2.17 3.10 -9.19 14.97 25.28 43.73 65.31
a5 3.05 2.10 1.38 0.44 -0.64 -1.66 -3.46 -6.73 -10.77
R2 0.99 0.97 0.95 0.98 0.97 0.96 0.99 1 0.99
Table 2  MLR1围岩校正系数(0.4 m≤H≤1 m)
Rt/Rs 0.1 0.2 0.5 2 4 6 10 20 50
a1 -2.32 -3.74 -10.81 13.79 8.83 7.81 7.08 6.60 6.28
a2 4.32 5.74 12.81 -11.79 -6.83 -5.81 -5.08 -4.60 -4.28
R2 1 1 1 1 1 1 1 1 1
Table 3  MLR1围岩校正系数表(1 m≤H≤2 m)
Fig.7  泥浆侵入的影响
a—侵入半径的影响;b—侵入带电阻率的影响
Fig.8  泥浆侵入校正图版
[1] 杨博, 潘懋, 侯晓琳 . 岩性折剖面自识别可视化算法在安塞油田的应用[J]. 特种油气藏, 2017,24(4):98-100.
[1] Yang B, Pan M, Hou X L . The application of automatically identified and visual algorithm for folded lithologic cross-section in Ansai oil field[J]. Special Oil & Gas Reservoirs, 2017,24(4):98-100.
[2] 马永生, 张建宁, 赵培荣 , 等. 物探技术需求分析及攻关方向思考——以中国石化油气勘探为例[J]. 石油物探, 2016,55(1):1-9.
[2] Ma Y S, Zhang J N, Zhao P R , et al. Requirement analysis and research direction for the geophysical prospecting technology of SINOPEC[J]. Geophysical Prospecting for Petroleum, 2016,55(1):1-9.
[3] 蒋维红, 董春梅, 闫家宁 . 岩相古地理学研究现状及发展趋势[J]. 断块油气田, 2007,14(3):1-3.
[3] Jiang W H, Doug C M, Yan J N . Study on present situation and trend of lithofacies paleogeography[J]. Fault-Block Oil and Gas Field, 2007,14(3):1-3.
[4] 肖东, 毛保华, 马欢波 , 等. EALT阵列侧向电阻率测井井场处理软件算法[J]. 测井技术, 2016,40(4):432-438.
[4] Xiao D, Mao B H, Ma H B , et al. EALT array lateral logging well site processing software algorithm[J]. Well Logging Technology, 2016,40(4):432-438.
[5] 刘迪仁, 万文春, 夏培 , 等. 不同井眼条件下的水平井双侧向测井响应[J]. 物探与化探, 2012,36(3):422-425.
[5] Liu D R, Wan W C, Xia P , et al. The response of dual laterolog to different borehole conditions in the horizontal well[J]. Geophysical and Geochemical Exploration, 2012,36(3):422-425.
[6] 舒心, 柯式镇, 许巍 , 等. 高分辨率阵列侧向测井井眼影响自动校正研究[J]. 断块油气田, 2016,23(4):470-475.
[6] Shu X, Ke S Z, Xu W , et al. Auto-correction of borehole effect for high-resolution array laterolog[J]. Fault-Block Oil and Gas Field, 2016,23(4):470-475.
[7] 倪小威, 徐观佑, 别康 , 等. 大斜度井/水平井阵列侧向测井响应及围岩/层厚影响快速校正[J]. 大庆石油地质与开发, 2018,37(2):144-151.
[7] Ni X W, Xu G Y, Bie K , et al. Array laterolog responseand rapid correction of the surrounding rock/layer thickness influence for highly deviated/horizontal wells[J]. Petroleum Geology & Oilfield Development in Daqing, 2018,37(2):144-151.
[8] 王小明, 万文春, 赵建武 , 等. 水平井网状裂缝储层双侧向响应特性研究[J].物探与化探,2014,38(6):1218-1221.
[8] Wang X M, Wan W C, Zhao J W , et al. Characteristics of dual laterolog response of net-fracture reservoirs in horizontal well[J].Geophysical and Geochemical Exploration,2014,38(6):1218-1221.
[9] 邓少贵, 徐悦伟, 蒋建亮 . 倾斜井非均匀地层的阵列侧向测井响应研究[J]. 测井技术, 2010,34(2):130-134.
[9] Deng S G, Xu Y W, Jiang J L . Study on the array laterolog response of heterogeneous formation in deviated well[J]. Well Logging Technology, 2010,34(2):130-134.
[10] 别康, 徐观佑, 万文春 , 等. 差分进化算法在双侧向和双感应测井联合反演中的应用[J]. 测井技术, 2015,39(6):704-709.
[10] Bie K, Xu G Y, Wan W C , et al. Application of differential evolution in dual laterolog and dual induction log joint inversion[J]. Well Logging Technology, 2015,39(6):704-709.
[11] 仵杰, 谢尉尉, 解茜草 , 等. 阵列侧向测井仪器的正演响应分析[J]. 西安石油大学学报:自然科学版, 2008,23(1):73-76.
[11] Wu J, Xie W W, Xie X C , et al. Forward response analysis of array lateral logging tool[J]. Journal of Xi’an Shi You University:Natural Science Edition, 2008,23(1):73-76.
[12] 邓少贵, 李智强, 范宜仁 , 等. 斜井泥浆侵入仿真及其阵列侧向测井响应数值模拟[J]. 地球物理学报, 2010,53(4):994-1000.
doi: 10.3969/j.issn.0001-5733.2010.04.024
[12] Deng S G, Li Z Q, Fan Y R , et al. Numerical simulation of mud invasion and its array laterolog response in deviated wells[J]. Chinese Journal of Geophysics, 2010,53(4):994-1000.
[13] 刘振华, 胡启 . 阵列侧向测井响应的计算及其特征[J]. 西安石油大学学报:自然科学版, 2002,17(1):53-57.
[13] Liu Z H, Hu Q . Calculation and characteristics of array laterlog responses[J]. Journal of Xi’an Shi You University:Natural Science Edition, 2002,17(1):53-57.
[14] 潘克家, 王文娟, 汤井田 , 等. 高分辨率阵列侧向测井的数学模型及有限元快速正演[J]. 地球物理学报, 2013,56(9):3197-3211.
doi: 10.6038/cjg20130932
[14] Pan K J, Wang W J, Tang J T , et al. Mathematical model and fast finite element modeling of high resolution array lateral logging[J]. Chinese Journal of Geophysics, 2013,56(9):3197-3211.
[15] 邓少贵, 李智强, 陈华 . 煤层气储层裂隙阵列侧向测井响应数值模拟与分析[J]. 煤田地质与勘探, 2010,38(3):55-60.
[15] Deng S G, Li Z Q, Chen H , et al. The simulation and analysis of array lateral log response of fracture in coalbed methane reservoir[J]. Coal Geology & Exploration, 2010,38(3):55-60.
[16] 范宜仁, 蒋建亮, 邓少贵 , 等. 高分辨率阵列侧向测井响应数值模拟[J]. 测井技术, 2009,33(4):333-336.
[16] Fan Y R, Jiang J L, Deng S G , et al. Numerical simulation of high resolution array lateral logging responses[J]. Well Logging Technology, 2009,33(4):333-336.
[17] 祝鹏, 林承焰, 李智强 , 等. 水平井和大斜度井中阵列侧向测井响应数值模拟[J]. 吉林大学学报:地球科学版, 2015,45(6):1862-1869.
[17] Zhu P, Lin C Y, Li Z Q , et al. Numerical simulation of array laterolog response in horizontal and highly deviated wells[J]. Journal of Jilin University :Earth Science Edition, 2015,45(6):1862-1869.
[18] 程文娟, 许月晨, 贺飞 , 等. 径向渐变地层阵列侧向电阻率测井响应研究[J]. 测井技术, 2018( 3).
[18] Cheng W J, Xu Y C, He F , et al. Study on resistivity logging response of array lateral logging under radial gradual formation[J].Well Logging Technology, 2018( 3).
[19] 马欢波, 王建波 . 阵列侧向测井影响因素分析[J]. 石油管材与仪器, 2017,3(2):78-80.
[19] Ma H B, Wang J B . Influence factors analysis of array lateral logging[J]. Petroleum Instruments, 2017,3(2):78-80.
[20] 肖加奇, 张庚骥 . 水平井和大斜度井中双侧向测井响应的正演[J]. 中国石油大学学报:自然科学版, 1996(1):24-28.
[20] Xiao J Q, Zhang G Q . Forward modeling of double lateral logging response in horizontal wells and high-angle wells[J]. Journal of China University of Petroleum:Natural Science Edition, 1996(1):24-28.
[21] 倪小威, 徐观佑, 冯加明 , 等. 斜井中各向异性储层阵列侧向测井正演响应特性[J]. 断块油气田, 2017,24(5):637-641.
[21] Ni X W, Xu G Y, Feng J M , et al. Forward response of array lateral logging in anisotropic reservoir of inclined shaft[J]. Fault-Block Oil and Gas Field, 2017,24(5):637-641.
[1] 夏亚良, 魏小东, 叶玉峰, 陈鑫, 王红梅, 李艳静, 马英哲, 严晓欢. 广义S变换多频解释技术及其在薄层评价中的应用[J]. 物探与化探, 2019, 43(1): 168-175.
[2] 黄诚, 张德会, 和成忠, 王新彦, 喻晓, 殷海燕. 热液金矿床围岩蚀变特征及其与金矿化的关系[J]. 物探与化探, 2014, 38(2): 278-283,288.
[3] 廖茂辉. 多元回归方法校正扩径对密度曲线声波曲线的影响[J]. 物探与化探, 2014, 38(1): 174-179,184.
[4] 周四春, 刘晓辉, 胡波. 地气场信息的地质学意义[J]. 物探与化探, 2012, 36(6): 1044-1049.
[5] 李长伟, 熊彬, 吕玉增. 电法测井的三维有限元模拟[J]. 物探与化探, 2012, 36(4): 585-590.
[6] 刘云祯. TGP隧道地震波预报系统与技术[J]. 物探与化探, 2009, 33(2): 170-177.
[7] 吕兆海 来兴平. 破碎围岩条件下井巷工程综合超前地质预报实践[J]. 物探与化探, 2009, 33(2): 229-229.
[8] 何进忠. 蚀变围岩指示元素铝钾锡 在党河南山金区域成矿预测中的作用[J]. 物探与化探, 2005, 29(1): 1-4,9.
[9] 蔡运胜. TSP203型隧道超前地质预报系统及应用[J]. 物探与化探, 2004, 28(2): 184-186.
[10] 解华明, 丁华. PLS法与隧道围岩稳定性分类[J]. 物探与化探, 2003, 27(4): 320-322.
[11] 杨华, 李金铭. 起伏地形对近矿围岩充电法影响规律的数值模拟研究[J]. 物探与化探, 1999, 23(3): 202-210215.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com