Please wait a minute...
E-mail Alert Rss
 
物探与化探  2015, Vol. 39 Issue (1): 1-11    DOI: 10.11720/wtyht.2015.1.01
  综述 本期目录 | 过刊浏览 | 高级检索 |
169km以远地壳质量的重力校正值高精度计算及其数值特征
安玉林1, 郭良辉1, 张明华2
1. 中国地质大学 地球物理与信息技术学院, 北京 100083;
2. 中国地质调查局发展研究中心, 北京 100037
High precision computation and numerical value characteristics of gravity emendation values arising from mass of the Earth's crust at the distance over 169 km from the observation point
AN Yu-Lin1, GUO Liang-Hui1, ZHANG Ming-Hua2
1. School of Geophysics and Information Technology, China University of Geosciences, Beijing 100083, China;
2. Development and Research Center of China Geological Survey, Beijing 100037, China
全文: PDF(7882 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

以前国内重力勘探教科书中,关于2.0 km以远地壳质量重力校正值的计算仅限于2.0~166.7 km圆形环带以内,并且采用的是直角坐标系内成立的计算公式.近年,中国地质调查局推出直角坐标系公式和球坐标系公式一起应用的重力校正值计算程序,但校正值计算涉及范围仍然局限于2.0~166.7 km圆形环带内.笔者曾推导出球壳型六面体重力场△g(zi)公式和其他与重力校正计算相关的公式,现用这些公式开展纯球坐标系内地壳质量的重力校正值高精度计算及其数值特征研究.取得的成果是:①全球陆地和海洋表面、尺度约40 km正方形网格上,169 km以远地壳全部质量重力校正值计算;②中国陆地2'×2'网格上,169 km以远地壳全部质量重力校正值计算;③西藏雅江大转弯3°×2°小区地表、尺度约0.556 km正方形网格上,169 km以远地壳全部质量重力校正值计算.通过对上述全球和局部地区169 km以远地壳质量的重力校正值分布特征分析,得到如下结论:①全球重力校正值的最大值、最小值和平均值分别为106.990×10-5 m/s2(87.877°E,32.271°N),-41.146×10-5 m/s2(166.122°E,28.327°N)和-16.439×10-5 m/s2,其数值分布特征与全球高程/海深分布特征基本一致.②在局部地区,169~1 272 km大环带的地壳质量的陆地地形校正值分布特征与该区高程分布特征基本一致.这说明,在地形高程差异大的地区,重力校正值中存在与地形高程正相关的高频成分,与以前众多专家的认识大不相同.实际上,该高频成分是由计算区本身相邻计算点之间存在较大的高程差值引起的.③无论局部地区及其周围陆高或海深变化多么大,1 272 km以远地壳质量的重力校正值均近似为数值很小的常数,可以不计算.④当局部地区及其周围高程或海深变化均很平缓时,169 km以远地壳全部质量的重力校正值也近似为常数,也可以不计算.此成果对于完善地壳质量重力校正值高精度计算有重要意义.

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
Abstract

In the previous textbooks of gravitational prospecting, the computation of gravity emendation values arising from mass of the Earth's crust at the distance over 2 km from the observation point is confined only to an area of circular ring 2.0~166.7 km in breadth and the computation expressions coming into existence in the orthogonal coordinate system are adopted. China Geological Survey has generalized in recent years the computation program of gravity emendation value that adopts the computation expressions both in the orthogonal coordinate system and in the spherical coordinate system; nevertheless, the computation of gravity emendation values remains confined to an area of circular ring 2.0~166.7 km in breadth and fails to take into account the gravitation arising from mass of the Earth's crust at the distance over 166.7 km from the observation point.10 years ago, the authors deduced alone gravity expression of the hexahedron with a spherical crust form and other expressions related to the computation of gravity emendation values. After this, adopting these expressions, the authors conducted researches on high precision computation and numerical value characteristics of gravity emendation values arising from mass of the Earth's crust in pure spherical coordinate system, with the following computation achievements obtained: ① high precision computation result of "Gravity Emendation Value arising from Mass of the Earth's Crust at Distance Over 169 km From Observation Point" (GEVMECDO 169 km FOP) at the square grid 40 km in breadth on whole Earth's land and ocean surface; ② high precision computation achievements of GEVMECDO 169 km FOP at longitude and latitude grid of China's continent; ③ high precision computation achievements of GEVMECDO 169km FOP at the square grid 0.556km in breadth in local 3°×2° area along the large curved portion of the Yarlung Zang Zangbo River.Based on analyzing numerical values distribution characteristics of GEVMECDO 169 km FOP on the whole Earth's and local surfaces, the authors have arrived at the following conclusions d: ① The maximum, minimum and mean values of gravity emendation values on the whole Earth's surface are 106.990 mgal (87.877°E, 32.271°N), -41.146 mgal (166.122°E,28.327°N) and -16.439 mGal respectively; the distribution characteristics of these values are in the main consistent with the distribution characteristics of the Earth's land altitude/sea depth values. ② The distribution characteristics of gravity terrain emendation values in a local area arising from mass of the Earth's crust in large circular rings 169-1 272 km in breadth are in the main consistent with the distribution characteristics of land altitude values in this local area. These data suggest that there are high frequency components in gravity emendation values of the area with larger altitude differences,and these high frequency components with terrain altitude values have positive correlation. These facts differ remarkably from the opinions put forward by many researchers. In fact, these high frequency components result from larger altitude differences of neighboring points in a local area. ③ No mater how large the differences of altitudes /sea depths in a local area and its peripheries are, these GEVMCDO 1 272 km FOP are approximately close to a very small constant and may not be computed; ④ Where the altitude or sea depth of local area and its peripheries changes smoothly, the gravity emendation values of the whole mass of the crust over the distance of 169km are approximately close to a constant and hence may not be calculated. The results achieved by the authors have important significance for perfecting high precision computation of gravity emendation values arising from mass of the Earth's crust. The authors suggest introducing these achievements into new textbooks of gravitational prospecting and also propose to study and extend this research topic with high precision and high speed with the purpose of convenient application of gravity emendation values arising from mass of the Earth's crust on the basis of these achievements.

收稿日期: 2013-12-16      出版日期: 2015-02-10
:  P631.2  
基金资助:

SinoProbe专项课题(SinoProbe-02-01,SinoProbe-01-05);国家自然科学基金面上项目(41374093);北京高等学校青年英才计划项目;中国地质大学(北京)"重力全球地形改正实验"课题;中国地质调查局项目

作者简介: 安玉林(1941-), 男, 教授, 1982年毕业于武汉地院北京研究生部, 主要从事重力和磁力勘探的教学与科研工作.anyulin@cugb.edu.cn
引用本文:   
安玉林, 郭良辉, 张明华. 169km以远地壳质量的重力校正值高精度计算及其数值特征[J]. 物探与化探, 2015, 39(1): 1-11.
AN Yu-Lin, GUO Liang-Hui, ZHANG Ming-Hua. High precision computation and numerical value characteristics of gravity emendation values arising from mass of the Earth's crust at the distance over 169 km from the observation point. Geophysical and Geochemical Exploration, 2015, 39(1): 1-11.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2015.1.01      或      https://www.wutanyuhuatan.com/CN/Y2015/V39/I1/1

[1] DZ/T 0082-1993.中国地质矿产部.区域重力调查技术规定[S].

[2] 雷受旻.重力广义地形改正值和均衡改正值的一种计算方法[J].海洋地质与第四纪地质,1884,4(4):101-111.

[3] 刘士毅.利用残球壳模型研究重力测量外部改正方法[J].物探与化探,1985, 9(1):25-32.

[4] 杨学样.关于确定山区区域重力测量中间层校正系数的几点意见[J].物探与化探,1990, 14 (5):396-400.

[5] 杨学样.布格改正和地形改正的误差—关于区域重力测量中地形改正最大半径的讨论[J].地壳形变与地震,1992,12(2):1-6.

[6] 刘立言,刘定和.重力地形改正(166.7 km至全球)改算图[J].物探与化探,1986,10(5):381-383.

[7] 陈邦彦.南海中央海盆格莱尼重力异常//中国地球物理学会第六届学术年会论文集,1990:307.

[8] 安玉林,张明华,黄金明,等.纯球坐标系内各项重力校正值计算方案和计算过程[J].物探与化探,2010,34(6):697-705.

[9] 梁青,陈超.基于嫦娥一号地形数据的月球布格重力异常与撞击盆地演化[J].中国科学 G 辑:物理学,力学,天文学,2009, 39(10):1379-1386.

[10] 周聪,杜劲松,梁青,等.基于球冠域的月球重力地形校正方法[J].地球物理学进展,2010, 25(2):486-493.

[11] 杜劲松,陈超,梁青,等.月球表层及月壳物质密度分布特征[J].地球物理学报,2012, 53(9):2059-2067.

[12] 杜劲松,陈超,梁青,等.球冠体积分的重力异常正演方法及其与 Tesseroid 单元体泰勒级数展开方法的比较[J].测绘学报,2012,41(3):339-346.

[13] 杜劲松,陈超,梁青,等.基于球冠滑动平均的球面重力异常分离方法[J].武汉大学学报:信息科学版,2012, 37(7):864-868.

[14] 杜劲松,陈超,梁青,等.月球重力异常及其计算方法[J].武汉大学学报:信息科学版, 2012, 37(11):1369-1373,1385

[15] Heck B,Seitz K.A Comparison of tesseroid, prismand point-mass approches from mass reductions in gravity field modelling[J].Journal of Geodesy, 2007,81(3):121-136.

[16] DZ-T 0082-2006.区域重力调查规范:附录G[S].

[17] Yang Z J,Chai Y P.Spherical external gravity correction[J].Applied Geophysics,2005,2(3):131-134.

[18] 《数学手册》编写组.数学手册[M].北京:人民教育出版社,1979:48-49,254,263.

[1] 王美丁, 马见青. 青海循化地区高精度磁异常特征及找矿预测[J]. 物探与化探, 2018, 42(3): 491-498.
[2] 王传雷, 祁明松, 胡尊平. 磁法探测木质沉船的模型实验及效果分析[J]. 物探与化探, 2015, 39(5): 962-966.
[3] 许文强, 袁炳强, 张波. 金堆城钼矿集区及邻区重磁场特征[J]. 物探与化探, 2015, 39(3): 496-502,536.
[4] 吾守艾力·肉孜, 梁生贤, 邹光富, 罗茂金. AMT与重力方法在云南芦子园地区隐伏岩体勘查中的应用[J]. 物探与化探, 2015, 39(3): 525-529.
[5] 李磊. SM-30磁化率仪的实用性研究[J]. 物探与化探, 2015, 39(3): 585-588.
[6] 徐东礼, 范正国, 舒晴, 叶挺明, 陈浩. 两种典型磁扰对航空磁测的影响[J]. 物探与化探, 2015, 39(2): 362-365.
[7] 刘椿, 任明君. 皖南屯溪地区重磁异常特征及找矿方向[J]. 物探与化探, 2015, 39(1): 35-40.
[8] 金洪文, 李百祥, 蒙轸, 华天月. 物探在甘肃省宕昌县代家庄铅锌矿找矿中的作用和效果[J]. 物探与化探, 2015, 39(1): 41-47.
[9] 李富, 王永华, 曾琴琴, 焦彦杰. 西南地区航磁区域特征[J]. 物探与化探, 2015, 39(1): 84-94.
[10] 陈炳锦. 地面高精度磁法在陕南西乡地区磁铁矿勘查中的应用[J]. 物探与化探, 2014, 38(6): 1129-1133.
[11] 赖月荣, 韩磊, 杨树生. 高精度磁测在阿勒泰冰碛物覆盖区地质填图中的应用[J]. 物探与化探, 2014, 38(6): 1181-1185.
[12] 宋双, 张恒磊. 向下延拓在深部矿产勘探中的应用——以青海某矿区为例[J]. 物探与化探, 2014, 38(6): 1195-1199.
[13] 徐东礼, 骆遥, 贾伟洁. 航磁重复线测量数据质量评价方法研究[J]. 物探与化探, 2014, 38(4): 729-731.
[14] 郭莹, 曲赞, 范志雄, 王传雷. 关于磁测工作质量检查方式的实验及讨论[J]. 物探与化探, 2014, 38(4): 781-786.
[15] 李军峰, 李文杰, 秦绪文, 胥值礼, 刘俊杰, 孟庆敏, 李飞, 刘莹莹. 新型无人机航磁系统在多宝山矿区的应用试验[J]. 物探与化探, 2014, 38(4): 846-850.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com