E-mail Alert Rss
 

物探与化探, 2024, 48(5): 1388-1399 doi: 10.11720/wtyht.2024.1379

生态地质调查

张掖盆地1990s表土层深部土壤重金属分布特征及其来源分析

何甘地,1, 何进忠,1, 牛洪斌2, 张忠平1

1.甘肃省地质调查院,甘肃 兰州 730000

2.甘肃省地质矿产勘查开发局,甘肃 兰州 730000

Distribution and origin of heavy metals in deep topsoil of the Zhangye Basin in the 1990s

HE Gan-Di,1, HE Jin-Zhong,1, NIU Hong-Bing2, ZHANG Zhong-Ping1

1. Geological Survey of Gansu Province, Lanzhou 730000, China

2. Gansu Provincial Bureau of Geology and Mineral Exploration & Development, Lanzhou 730000, China

通讯作者: 何进忠(1963-),男,正高级工程师,2008年毕业于中国地质大学(武汉),从事矿床学与地球化学研究工作。Email:908035925@qq.com;viewsino@163.com

第一作者: 何甘地(1990-),男,助理工程师,2017年毕业于河北地质大学,从事矿产和地球化学调查工作。Email:gandihe@foxmail.com;gandihe@yeah.net

责任编辑: 蒋实

收稿日期: 2023-09-1   修回日期: 2023-11-27  

基金资助: 中国地质调查局地质调查项目(121201004000150017-35)
甘肃省自然资源厅科技创新项目(202231)

Received: 2023-09-1   Revised: 2023-11-27  

摘要

甘肃省张掖盆地是国家现代农业示范区,也是1990s迄今唯一农业土壤调查与区域地球化学勘查相重合的地区。笔者搜集了1990s甘肃省物探队与化探队在张掖盆地及其周围山地采集的岩石、表土层深部土壤和水系沉积物的地球化学调查数据,按照拉依达法则和采样介质计算了元素在各个地质单元中的背景值;进而以重金属为主线,采用将区域表土层深部土壤背景值与中国土壤背景值和同时期耕作层土壤平均值作对比、第四系地层土壤背景值与区域土壤背景值作对比,以及将地球化学混合模型与地理学要素相结合的方法,探讨1990s张掖盆地表土层深部土壤重金属分布特征及其物质来源。相对中国土壤元素背景值,研究区表土层深部土壤富集Cu和Cd,贫Zn;与同时期耕作层土壤相比,Cr显著富集,Cu、Zn、Pb和As显著贫化。重金属Zn、Cd和As主要源于北祁连;Pb来源于龙首山;Hg和Cr可能主要与人类活动有关;表土层深部土壤中的H3潜在生态风险指数异常是西北风和东南风共同作用的结果。重金属在表土层深部土壤中的富集程度与人类活动强度正相关,与新构造运动强度负相关。本次研究为探讨该区区域土壤环境演化提供了科学数据。

关键词: 土壤; 表土层深部土壤; 重金属; 物质来源; 张掖盆地; 甘肃

Abstract

The Zhangye Basin in Gansu Province serves as a national modern agriculture demonstration area in China. The 1990s was the only period that witnessed both agricultural soil surveys and regional geochemical surveys in the area. This study aims to provide data support for investigating the evolution of the regional soil environment in the area. It gathered geochemical survey data of rocks, deep topsoil, and stream sediments, which were sampled by Gansu geophysical and geochemical exploration teams in the Zhangye Basin and its surrounding mountains in the 1990s. Using these data, this study calculated the background values of elements in various geological units as per the Pauta criterion and sampling media. Focusing on heavy metals, it compared their regional background values in deep topsoil with the nationalsoil background values and the coetaneous averages of farming soil elements surveyed by the agricultural sector, as well as the soil background values of Quaternary sediments with the regional background values. Moreover, it combined geochemical hybrid models with geographical factors. Finally, it explored the distribution characteristics and material sources of heavy metals in deep topsoil of the Zhangye Basin in the 1990s. Compared to the national soil background values, the deep topsoil was enriched in Cu and Cd but depleted in Zn. Contrasting with contemporaneous farming soil, the deep topsoil was significantly enriched in Cr but prominently depleted in Cu, Zn, Pb, and As. In terms of sources, heavy metals Zn, Cd, and As were principally derived from the northern Qilian Mountains, Pb originated from the Longshou Mountains, and Hg and Cr might be primarily associated with human activities. The abnormal H3 potential ecological risk index of the deep topsoil resulted from the combined effect of northwest and southeast winds. The enrichment of heavy metals in deep topsoil was positively correlated with human activity intensity but negatively correlated with neotectonic movement intensity.

Keywords: soil; deep topsoil; heavy mental; material source; Zhangye Basin; Gansu Province

PDF (5990KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

何甘地, 何进忠, 牛洪斌, 张忠平. 张掖盆地1990s表土层深部土壤重金属分布特征及其来源分析[J]. 物探与化探, 2024, 48(5): 1388-1399 doi:10.11720/wtyht.2024.1379

HE Gan-Di, HE Jin-Zhong, NIU Hong-Bing, ZHANG Zhong-Ping. Distribution and origin of heavy metals in deep topsoil of the Zhangye Basin in the 1990s[J]. Geophysical and Geochemical Exploration, 2024, 48(5): 1388-1399 doi:10.11720/wtyht.2024.1379

0 引言

《中国居民膳食营养素参考摄入量》2013修订版规定,人体必需的微量元素有15种,即钙、磷、钾、钠、镁、氯、铁、碘、锌、硒、铜、氟、铬、锰、钼等[1]。《土壤环境质量农用地土壤污染风险管控标准》(GB 15618—2018)[2]明确规定,农用地土壤污染风险筛选值项目为镉、汞、砷、铅、铬、铜、钼、锌,管制值项目为镉、汞、砷、铅、铬,这些元素通常又被称作重金属[3-4]或生物毒性元素[5],元素铬、铜、钼、锌同时存在于人体必需元素和生物毒性元素中。

张掖盆地处于甘肃省河西走廊,是全国最大的玉米种植区和重要的粮食、蔬菜、瓜果、油料、牛羊生产基地及国家现代农业示范区,对该区域土壤性状和成分的研究一直受到重视。20世纪90年代,张掖地区农科所完成了区域农田耕作层土壤化学性状测试,并将其与1986年的区域土壤普查结果作了对比[6];甘肃省地矿系统在张掖盆地第四系和南北山地分别完成了土壤测量和水系沉积物测量,利用张掖盆地土壤测量结果总结了生土层与表土层土壤中微量元素的富集状况,并提出了适宜种植作物的建议[7-8]。2000年以来,陆续出现多项针对河西走廊和盆地绿洲农业区的土壤地球化学调查成果,并利用调查数据对相应工作范围的重金属污染状况和生态风险进行了评价[9-13]。上述各项成果中,甘肃省地矿系统于1990s的勘查成果覆盖面积最广,采样点位最多,采样深度相当于表土层深部的犁底层或耕作层与生土层的过渡部位,有别于其他工作者以耕作层和生土层为采样对象的工作方法,而且1990s是该区至今唯一区域地球化学勘查与农业土壤调查相重合的时代;然而,至今未能对该数据在探讨区域土壤环境地球化学特征方面的作用给予重视。本文将张掖盆地土壤与南北山地看作一个整体,选择20世纪90年代在张掖盆地和周围山地进行的32种元素的岩石、表土层深部土壤和水系沉积物测量数据,以重金属元素为主线,从区域和第四系地层两个层次,利用元素的背景分析结果,总结表土层深部土壤重金属元素的丰缺状况及其与同期耕作层土壤农化性状调查结果的差异,进一步探讨盆地土壤中重金属的物质来源,为深入理解该区域土壤物质成分的时空演化规律及土壤元素累积与趋势预测[14]奠定基础。

1 研究区概况

张掖盆地处于北祁连与龙首山之间,按地貌及水系展布特点,本文对该盆地的研究范围局限在高台、民乐、山丹围限的第四系分布地带,面积约8 700 km2(图1a)。盆地内地层主体为第四系(Q),边部零星出露新近系(N)。北部山地龙首山主体为下白垩统庙沟组(K1m)砂砾岩建造和古近系白杨河组(Eb)砂岩泥岩建造,出露基底岩石为龙首山岩群(Ar3-Pt1L)碎屑岩建造和碳酸盐岩建造。南部山地北祁连主体为下古生界奥陶系和志留系组成的复理石夹火山岩建造(O-S),上覆少量上古生界石炭系和二叠系细碎屑岩建造(C-P),以及下白垩统下沟组砂砾岩—泥岩建造(K1x);沿羊毛达板至老君山由北而南依次发育香毛山蛇绿岩和北祁连蛇绿混杂岩。新生代以来青藏高原持续隆升,并有沉积物粒度和古地震活动响应[15-16],其中,160 ka和40 ka的构造活动最为强烈[17]

图1

图1   张掖盆地地质背景(a)、1990s表土层深部土壤样品采样位置(b)、重金属异常分布(c)

Fig.1   The geological background of Zhanye Basin (a),and its location of deep topsoil samples (b) and heavy metal anomalies(c) in 1990s


全域气候干旱,仅7月风向为西北或南东,其余月份为西北气流所控制[18-19];春季比冬季风力强,受河西走廊的地形影响,易形成狭管效应[20]。北部为戈壁或低山丘陵,水系欠发育。南部为中—高山,海拔最高达4 800 m以上,水系呈帚状由西南向北东汇流形成黑河,在北部受龙首山阻挡而流向西北。研究区处于钙成土纲地带,碱度较高,pH=7~9[21-22],重金属元素在其中主要以黏土和铁锰氧化物吸附形式存在[23-30]

2 材料与方法

区域地球化学勘查样品的采样介质有岩石、土壤和水系沉积物,采样记录来源于20世纪90年代完成的祁连山幅、祁连幅、张掖幅、临泽幅、高台幅等5个1:20万图幅的区域化探报告。按照区域地球化学勘查规范[31],在北祁连和龙首山的每个系级单元采集岩石样品30件以上,在地质单元内均匀布置采样点,样品由多点法采集同一岩性岩石样品组合而成,每件样品质量大于200 g;同步采集水系沉积物样品,采样密度为1~4点/km2,样品采自一级水系或二级水系。在山前、山间及河西走廊第四系覆盖区和农田区采集土壤样品,采样密度1点/4 km2,采样深度10~30 cm,相当于表土层深部的犁底层;其中,在张掖幅的农田区同点采集浅层(10~30 cm)和深层(60~90 cm)两种样品,本文采用其浅层样品测试数据。在采样过程中完整地记录了采样位置、采样层位、样品性质、水系级别、地形等级、植被等若干参数。本文采用85件岩石样品、1 710件表土层深部土壤样品、3 913件水系沉积物样品(图1b)的测试数据进行分析。

土壤样品截取粒级为-60目,水系沉积物样品截取粒级为-20~+80目(北祁连)和-4~+60目(龙首山)[7-8,32]。所有样品过筛后质量大于250 g,并按4 km2单元形成的组合样为分析样品。所有样品均由甘肃省地质矿产局兰州中心实验室按区域地球化学勘查规范进行定量分析,共测试元素39种,本文从中选择了重金属元素和能反映物质成分和示踪物源的SiO2、Al2O3、K2O、Na2O、CaO、MgO、Fe2O3、Ti、Zr、Nb、La、Th、Co、Y、Ni、B、P 等32种元素或氧化物来进行张掖盆地表土层深部土壤成分和物质来源研究,各元素的分析方法是:Sb、As为原子荧光法,其余元素为X-射线荧光法;各元素的分析报出率(88.01%~100%)、一标对数偏差(100%)、二标批次合格率(97.2%~100%)、内检相对误差合格率(96.9%~100%)4项质量监控指标完全满足规范(DZ/T 0167—1995)[31]要求。SiO2、Al2O3、K2O、Na2O、CaO、MgO和Fe2O3的含量单位为%,Hg和Cd的含量单位为10-9,其余元素的含量单位为10-6

在统计单元划分和对数变换的基础上,遵循拉依达法则计算背景值,其中SiO2的背景值为剔除异常点后的含量平均值,其余元素或氧化物的背景值为剔除异常点后的几何平均值。进而以重金属元素为主线,采用将区域表土层深部土壤背景值与中国土壤背景值和农业部门同年代耕作层调查结果作对比、将第四系地层土壤背景值与区域土壤背景值作对比来了解元素在表土层深部土壤中的分布特征。在圈定重金属平均潜在生态风险指数异常的基础上,利用主成分分析、碱性条件下风化产物中稳定元素[25-30,33-34]的langmunir通用混合模型[35-37],并与地理学要素相结合的方法,研究表土层深部土壤重金属的物质来源。

平均潜在生态风险指数RI¯=(Ti·Pi)/n,Pi=Ci/Si, 即参加计算的元素潜在生态风险指数的平均值,轻微、中等、强、很强之间的临界值按单一重金属潜在生态风险系数Ei的临界值确定,依次为40、80、160[13];Ti为单一重金属的毒性系数, Zn=1,Cr=2,Cu=Pb=Ni=5,As=10,Cd=30,Hg=80[38];Pi为评价对象污染指数,Ci为评价单元土壤的某重金属含量平均值,Si为某重金属评价标准,此处取该元素在张掖盆地表土层深部土壤中的背景值(表1)。

表1   张掖盆地第四系与毗邻地质单元的重金属及其他元素的背景值

Table 1  Background values of heavy metals and other elements of Quaternary in Zhangye Basin and its adjacent geological units

介质地质
单元
代码样数CuZnMoCrHgCdPbAsAl2O3SiO2Na2OCaOMgOFe2O3MnK2O
岩石
(R)
大青山
花岗岩
DGR1051.4663.570.1118.9435.5273.0911.651.9615.7261.673.095.673.094.95945.001.63
龙首山LSS818.7269.920.4817.8719.6265.5218.912.1414.8463.653.204.542.394.84887.282.05
北祁连NQL5643.4659.440.3363.1731.8095.0919.428.799.4457.481.023.642.594.97859.581.40
北祁连
蛇绿岩
NQO1121.9550.090.3655.5434.6876.4025.158.7910.5965.241.192.532.164.06585.051.83
土壤
(So)
第四系Q171023.0450.990.6285.0330.04103.6519.365.1110.4666.351.474.332.444.10590.231.97
全国背
景值[39]
86020.0067.701.2053.9040.0074.0023.609.2012.113.610.991.043.90482.002.16
1990耕
作层[6]
35.0389.9915.4750.13105.10326.504.310.145.611.983.33611.800.94
水系
沉积
物(St)
大青山
花岗岩
DGRS524.7773.140.4234.269.15101.9141.863.2711.6967.242.453.601.754.08648.903.38
龙首山LSSS56012.3633.930.5835.9816.6073.8122.831.389.5369.441.543.371.542.56470.462.40
北祁连NQLS148227.5562.910.6483.4928.71107.2220.8211.0512.4163.901.443.032.184.86646.962.32
北祁连
蛇绿岩
NQOS15336.4669.730.78153.8431.93136.7719.7415.8311.8062.901.223.473.445.59765.51.91
R/St
相对
偏差
RE/%
大青山
花岗岩
-70.0314.01115.3157.60-118.1032.94112.9350.08-29.388.65-23.02-44.72-55.16-19.26-37.1570.02
龙首山-40.91-69.3119.7367.25-16.6511.9018.78-43.16-43.588.69-69.90-29.61-43.50-61.73-61.4015.33
北祁连-44.805.6763.5027.72-10.2012.006.9722.7827.2010.5734.42-18.39-17.06-2.36-28.2349.89
北祁连
蛇绿岩
49.6832.7874.8993.89-8.2556.64-24.090.1510.77-3.651.9931.3245.8431.8526.724.33
介质地质
单元
代码样数数PBFSbAgCoLaLiNbNiSnSrThTiYZr
岩石
(R)
大青山
花岗岩
DGR10645.9220.92480.930.3039.7517.3729.4710.059.2315.831.71405.927.504151.5722.41159.37
龙首山LSS8719.2111.01458.751.2463.9113.8728.6918.6911.0811.011.66382.439.163932.4421.01146.00
北祁连NQL56268.8623.83487.022.2478.4913.3416.6316.3210.2535.202.12140.009.092587.7019.99109.13
北祁连
蛇绿岩
NQO11363.3718.42368.635.1283.1011.1824.2713.719.6822.941.79122.879.142443.0319.25126.00
土壤
(So)
第四系Q1710541.9037.21471.510.8358.2911.2734.4721.2311.9833.422.35160.109.103144.4621.02187.83
全国背
景值[39]
860440.0038.70440.001.06110.0011.2037.4029.1023.402.30121.0012.803800.0021.80237.00
1990耕
作层[6]
1413.0088.2919.9438.6551.1592.68
水系
沉积
物(St)
大青山
花岗岩
DGRS5656.10521.260.3682.459.6037.2735.2013.9324.125.32151.9917.223473.8226.30183.21
龙首山LSSS560402.39448.110.4748.016.3537.1512.4011.1911.062.20170.838.482318.1920.11173.19
北祁连NQLS1482606.62518.040.9861.6513.7535.8125.8912.7236.732.50145.3511.383762.2322.50186.96
北祁连
蛇绿岩
NQOS153589.64594.701.3072.3416.8335.0628.3712.9976.112.30118.1711.314087.1521.61178.67
R/St
相对
偏差
RE/%
大青山
花岗岩
1.568.0518.6369.88-57.6423.39111.1940.6441.49102.80-91.0378.69-17.7815.9713.92
龙首山-56.49-2.35-90.67-28.42-74.3725.68-40.480.970.4227.79-76.49-7.67-51.65-4.3517.04
北祁连77.166.17-78.81-24.043.0373.1645.3821.534.2416.433.7422.4036.9911.8152.57
北祁连
蛇绿岩
47.4846.93-118.97-13.8440.3136.3669.6829.15107.3824.85-3.8921.1950.3511.5334.58

注:氧化物含量单位为%,Hg、Cd含量单位为10-9,其余元素含量单位为10-6

新窗口打开| 下载CSV


元素在地表风化产物中的稳定性与区域地理条件或地球化学景观有关,本文利用元素在岩石和水系沉积物中背景值的相对偏差(RE)来确定该区域地表环境中的稳定元素,计算公式为:RE=200(Cr-Cs)/(Cr+Cs),其中CrCs分别代表同一单元中某元素在岩石和水系沉积物中的背景值。

3 结果与讨论

3.1 区域表土层深部土壤地球化学特征

张掖盆地表土层深部土壤地球化学指标的背景值如表1所示,与全国土壤背景值[39]相比,重金属中,Cu、Cd富集,Zn贫化;其他指标中,CaO、MgO、Fe2O3、P、Mn、Sr、Ba、F、Co、Ni、Sn富集。富集指标反映了钙成土的成分特征。

与1990年张掖地区农科所对耕作层的调查成果[6]相比,研究区表土层深部土壤重金属元素Cr显著富集,Cu、Zn、Pb和As显著贫化;其他指标中,Al2O3、Na2O、Fe2O3和K2O显著富集,CaO、P、B、Co、Li、Ni和Sn显著贫化;说明耕作层中的重金属主要来源于人类活动,可能与施肥对耕作层上部产生影响,灌溉使黏粒沉积在犁底层和干旱地区,并产生蒸发作用有关。

与大青山花岗岩、龙首山、北祁连和北祁连蛇绿岩的岩石地球化学背景值比较,研究区表土层深部土壤重金属元素中Cd、Cr相对北祁连和龙首山全面富集,Pb和As较龙首山富集,但较北祁连贫化。与大青山花岗岩、龙首山、北祁连和北祁连蛇绿岩的水系沉积物地球化学背景值比较,研究区表土层深部土壤较北祁连和龙首山均富集Hg和Cr,较北祁连贫化但较龙首山富集的有Cd和As。表土层深部土壤中重金属的这种富集特点和由南到北的渐变趋势说明其富集过程分别与人类活动和机械混合过程有关。

3.2 地层的表土层深部土壤地球化学特征

研究区第四系由下而上依次出露下更新统(Qp1)、中更新统 (Qp2)、上更新统(Qp3)和全新统(Qh)的沉积层[40]。各指标在各沉积层中的含量及丰缺状况列于表2表3,其中,对于全新统沉积层的土壤地球化学参数,以黑河为界分别统计,以更细致地了解不同来源的物质成分特征。

表2   张掖盆地第四纪沉积层重金属及其他元素背景值

Table 2  Background values of heavy metals and other elements of Quaternary sediments in Zhangye Basin

地质单元代码样数CuZnMoCrHgCuZnMoCrHgAl2O3SiO2Na2OCaOMgOFe2O3
第四系Q171023.0450.990.6285.0330.0423.0450.990.6285.0330.0410.4666.351.474.332.444.10
下更新统玉
门组洪积层
Qp1y419.8748.040.4693.7339.4419.8748.040.4693.7339.4410.9569.671.573.512.583.91
中更新统酒
泉组洪积—
冰积层
Qp2j1720.6447.800.6066.9730.5720.6447.800.6066.9730.5711.5767.221.303.622.124.21
上更新统近
河道洪积层
Qp3plm11915.8144.031.0043.7017.5915.8144.031.0043.7017.5910.7964.691.294.872.833.35
上更新统河
道北砂砾层
Qp3pln539.3824.340.4829.2615.729.3824.340.4829.2615.727.5475.931.692.510.971.94
上更新统河
道南洪积层
Qp3pls26217.7943.530.5076.0028.5317.7943.530.5076.0028.539.8471.601.473.251.973.64
全新统河道
北冲洪积层
Qhalpln79.7526.600.2323.1916.269.7526.600.2323.1916.2610.0273.282.112.981.201.96
全新统河道
南冲洪积层
Qhalpls12323.4652.130.6984.8135.4923.4652.130.6984.8135.4911.0963.931.504.742.864.00
全新统河道
北坡残积层
Qhdeln145.6616.330.2919.4814.555.6616.330.2919.4814.556.8381.091.461.810.581.20
全新统河道
南坡残积层
Qhdels1012.7634.030.4854.8924.9312.7634.030.4854.8924.938.7476.041.482.571.282.87
全新统风积层Qheol8820.4543.990.5179.8222.1320.4543.990.5179.8222.139.7870.131.523.332.263.69
全新统湖
沼相堆积
Qhl4428.8755.261.0879.6532.2728.8755.261.0879.6532.2710.4159.551.816.264.343.82
全新统河道
南洪积层
Qhpls26225.8860.730.76103.7541.0825.8860.730.76103.7541.0812.0163.321.354.993.034.42
全国背景值[39]86020.0067.701.2053.9040.0020.0067.701.2053.9040.0012.113.610.991.043.90
地质单元代码样数CdPbAsSbAgCoLaLiNbNiSnSrThTiYZr
第四系Q1710103.6519.365.110.8358.2911.2734.4721.2311.9833.422.35160.099.103144.4621.02187.83
下更新统玉
门组洪积层
Qp1y487.8214.091.190.5758.6611.1036.6615.1910.8930.501.85149.046.853040.3519.85149.36
中更新统酒
泉组洪积—
冰积层
Qp2j1771.0213.391.520.7646.9912.4238.2818.5912.3722.602.19175.357.303259.4620.67157.68
上更新统近
河道洪积层
Qp3plm11967.5017.661.460.6739.248.8043.1814.5814.7516.492.08183.668.262993.6421.72195.60
上更新统河
道北砂砾层
Qp3pln5360.8226.761.250.3550.274.5529.509.658.447.582.08166.947.831739.9517.86154.30
上更新统河
道南洪积层
Qp3pls26280.9319.921.840.6448.529.9635.8917.5310.9023.932.02145.907.482772.5519.32156.04
全新统河道
北冲洪积层
Qhalpln751.7917.291.740.2340.844.1238.187.0210.416.382.29295.457.031540.5217.99139.54
全新统河道
南冲洪积层
Qhalpls12398.2521.111.920.7956.3711.7840.5019.7012.7532.662.30203.299.393225.3621.66179.09
全新统河道
北坡残积层
Qhdeln1460.7925.761.060.2544.252.6329.627.787.854.571.85150.156.471244.2916.30110.40
全新统河道
南坡残积层
Qhdels1080.6622.051.430.6158.447.1533.8813.179.3312.861.99138.507.662299.2417.94147.67
全新统风积层Qheol8884.8419.092.060.6352.2610.2936.3317.8110.8124.022.27160.618.602844.9819.30150.79
全新统湖
沼相堆积
Qhl4499.7119.041.620.7965.4412.2043.5923.2011.7832.202.34326.818.603213.3821.06177.54
全新统河道
南洪积层
Qhpls262106.6522.232.030.8560.4513.6442.3522.4713.5441.542.35193.438.533562.9022.73190.24
全国背景值[39]86074.0023.609.201.06110.0011.2037.4029.1023.402.30121.0012.803800.0021.80237.00

注:氧化物含量单位为%,Hg、Cd含量单位为10-9,其余元素为10-6

新窗口打开| 下载CSV


表3   第四纪沉积层中元素的丰缺状况

Table 3  Rich state of elements in the Quaternary sediments

地质单元代码重金属其他元素平均潜在生态
风险指数(RI¯)
富集贫化富集贫化
下更新统玉门组Qp1yCr、CdCu、ZnCaO、MgO、Fe2O3、P、Mn、F、Ni、SrK2O、Mo13.47~15.03
中更新统酒泉组Qp2jCu、CrZnCaO、MgO、Fe2O3、P、Mn、Co、SrK2O、Mo5.63~34.37
上更新统近河道洪积层Qp3plmCu、ZnCaO、MgO、K2O、P、Mn、F、La、SrFe2O3、Mo5.63~30.48
上更新统河道北砂砾层Qp3plnPbCu、ZnCaO、K2O、SrMgO、Fe、P、Mn、Mo5.00~14.57
上更新统河道南洪积层Qp3plsCrCu、ZnCaO、MgO、Mn、Ni、SrFe、K2O、P、Mo7.53~29.09
全新统河道北冲洪积层QhalplnCu、ZnCaO、MgO、K2O、SrFe2O3、P、Mn、Mo7.18~11.38
全新统河道南冲洪积层QhalplsCu、Cr、CdZnCaO、MgO、Fe2O3、P、B、Mn、
Co、F、La、Ni、Sr
K2O、Mo13.98~49.89
全新统河道北坡残积层QhdelnPbCu、ZnCaO、K2O、Sr、MoMgO、Fe2O3、P、Mn6.49~14.33
全新统河道南坡残积层QhdelsCr、CdCu、ZnCaO、MgO、Sr、MoFe2O3、K2O、P、Mn9.60~23.80
全新统风积层QheolCu、Cr、CdZnCaO、MgO、P、Mn、Ni、Sr、MoFe2O3、K2O6.97~39.71
全新统湖沼相堆积QhlCu、Cr、CdZnCaO、MgO、P、B、Mn、Co、F、
La、Ni、Sn、Sr、Mo
Fe2O3、K2O0.91~1.13
全新统河道南洪积层QhplsCu、Cr、Hg、CdZnCaO、MgO、Fe2O3、K2O、P、B、
Mn、Co、F、La、Ni、Sn、Sr、Y、Mo
6.23~49.89

新窗口打开| 下载CSV


表2表3可见,重金属元素在上更新统和全新统河道北沉积层中相对贫化,仅Pb在上更新统河道北砂砾层和全新统河道北残坡积层富集,Cr在上更新统河道南洪积层富集,该现象可能与晚更新世剧烈的新构造运动[17]有关。下—中更新统富集重金属Cr、Cd或Cu,全新统河道南冲积层、洪积层、残坡积层、风积层全面富集重金属Cu、Cr和Cd,Hg仅在全新统河道南洪积层中富集。其他指标中,CaO和Sr在所有沉积层均富集,Fe2O3或K2O在大部分沉积层贫化,P在上更新统和全新统残坡积层贫化。

3.3 表土层深部土壤的平均潜在生态风险指数

利用表土层深部土壤样品中的 Zn、Pb、Ni、Hg、Cu、Cr、Cd和As含量求得第四系地层的平均潜在生态风险指数RI¯= 0.91~49.89(表3),其中全新统河道南冲洪积层(Qhalpln)和全新统河道南洪积层(Qhpls) 中可能存在中等风险样品,重金属在其中的富集可能源于洪水对上游物质的冲刷作用。

基于水系沉积物和表土层深部土壤样品的 Zn、Pb、Ni、Hg、Cu、Cr、Cd和As的平均潜在生态风险指数RI¯=40,在张掖盆地及其南北山地圈定异常5处(图1c);其中H3为表土层深部土壤异常,该异常中Zn、Pb、Ni、Hg、Cu、Cr、Cd和As的含量(表4)均低于筛选值[2],是由重金属的弱富集引起的。

表4   H3平均潜在生态风险指数(RI¯)异常统计值

Table 4  Statistics of the H3 anomaly of average potential ecological risk indexes(RI¯)

参数ZnPbNiHgCuCrCdAsRI¯
样品数666666666
平均值69.7520.8758.20109.5032.15131.12148.333.2245.80
标准差2.361.384.4310.082.575.609.830.972.93
最小值65.7020.1049.80103.0027.60119.70130.001.5043.91
最大值71.2023.5060.70123.0033.70133.80160.003.8049.89
偏度-0.751.06-1.020.54-0.82-1.36-0.80-0.830.55
峰度1.592.302.231.051.752.912.351.761.07

注:Hg、Cd含量单位为10-9,其余元素为10-6

新窗口打开| 下载CSV


3.4 区域主成分异常指示的人类活动痕迹

因子分析法常被用来分析重金属的来源[41-43],本研究采用主成分分析结果来示踪污染物来源,纳入分析的变量为32种元素或氧化物,获得主成分F1(方差贡献=29.07%,载荷aij>0.4)的元素或化合物组合是Al2O3、Be、Bi、Y、W、V、U、Ti、P、Ni、Nb、Mn、Mg、Li、La、Fe2O3、F、Co、Cr、Cu、Zn、Cd、As,反映了北祁连蛇绿岩及重金属矿区,其异常的分布如图1c所示。H3处F1主要围绕张掖市区及村落分布;近张掖市区的重金属异常与人口密度呈正相关,但张掖农场未表现出重金属异常(图2),显著地表现为非农业人类活动污染迹象,如金属加工[11]、商业活动和道路结点等[13,42-43]

图2

图2   H3平均潜在生态风险指数异常处的主成分异常

Fig.2   The princinpal component anomalies around H3 anomaly of average potential ecological risk indexes


3.5 元素地球化学混合模型指示的物质源区

H1、H2、H4和H5潜在生态风险异常均毗邻北祁连蛇绿岩和重金属矿区,季节性洪水是搬运重金属的主要因素,风力作用影响相对较小;然而,由于狭管效应的存在,盆地内表土层深部土壤及其中的H3潜在生态风险指数异常的风成作用不能忽视。下面基于碱性条件下稳定元素的比值来判别风成作用对盆地内表土层深部土壤及其中H3潜在生态风险异常的影响。依照同一地质单元中元素在岩石和水系沉积物中背景值的相对偏差(RE)计算结果(表1)判断,在龙首山和北祁连,含量相对稳定的元素或化合物(RE<33%)有14种:SiO2、CaO、Hg、Cd、Pb、Zn、Ag、F、Nb、Ni、Sn、Th、Y、Co。进一步遵循元素的亲合性和通用混合方程[35-37],选择碱性土壤中与铁氧化物相容的稳定元素[25-30,33-34]对比值图解,如w(Zn)/w(Ni)-w(Co)/w(Ni)图解和w(Pb)/w(Cd)-w(Zn)/w(Cd)图解(图3a、3c3e)示踪土壤和重金属的物质源区;选择碱性土壤中与铁氧化物不相容的稳定元素[29]对比值图解,如w(Ca)/w(Al)-w(Si)/w(Al)图解和w(Pb)/w(Y)-w(Co)/w(Y)图解(图3b、3d3f)示踪引起元素发生分异的地质作用。

图3

图3   张掖盆地表土层深部土壤与潜在生态风险指数异常物源地球化学图解

DGR—大青山花岗岩岩石;LSS—龙首山岩石;NQL—北祁连岩石;NQO—北祁连蛇绿岩岩石;DGRS—大青山花岗岩水系沉积物;LSSS—龙首山水系沉积物;NQLS—北祁连水系沉积物;NQOS—北祁连蛇绿岩水系沉积物;Q—第四系表土层深部土壤;Qp1y—玉门组洪积层表土层深部土壤;Qp2j—酒泉组洪积-冰积层表土层深部土壤;Qp3plm—上更新统近河道洪积层表土层深部土壤;Qp3pln—上更新统河道北砂砾层表土层深部土壤;Qp3pls—上更新统河道南洪积层表土层深部土壤;Qhalpln—全新统河道北冲洪积层表土层深部土壤;Qhalpls—全新统河道南冲洪积层表土层深部土壤;Qhdeln—全新统河道北坡残积层表土层深部土壤;Qhdels—全新统河道南坡残积层表土层深部土壤;Qheol—全新统风积层表土层深部土壤;Qhl—全新统湖沼相堆积表土层深部土壤;Qhpls—全新统河道南洪积层表土层深部土壤

Fig.3   Geochemical diagrams for origins of deep subsoil and potential ecological risk index anomalies in Zhangye Basin

DGR—Daqing mountain granite rocks; LSS—Longshou mountain rocks; NQL—north Qilian rocks; NQO—north Qilian ophiolite rocks; DGRS—Daqing mountain granite stream sediment; LSSS—Longshou mountain drainage sediment; NQLS—north Qilian stream sediment; NQOS—north Qilian ophiolite stream sediment; Q—Quaternary deep topsoil; Qp1y—diluvium layer of deep topsoil from Yumen Formation; Qp2j—diluvium-glacial layer of deep topsoil from Jiuquan Formation; Qp3plm—diluvium layer of deep topsoil from upper Pleistocene near the river; Qp3pln—sand-gravel layer of deep topsoil from upper Pleistocenein in north side of river; Qp3pls—diluvium layer of deep topsoil from upper Pleistocene in south side of river; Qhalpln—alluvium-diluvium layer of deep topsoil from Holocene in north side of river; Qhalpls—alluvium-diluvium layer of deep topsoil from Holocene in south side of river; Qhdeln—eluvium-slope layer of deep topsoil from Holocene in north side of river; Qhdels—eluvium-slope layer of deep topsoil from Holocene in south side of river; Qheol—aeolian layer of deep topsoil from Holocene; Qhl—lacustrine-swamp layer of deep topsoil from Holocene; Qhpls—diluvium layer of deep topsoil from Holocene in south side of river


w(Zn)/w(Ni)-w(Co)/w(Ni)图解(图3a)和w(Pb)/w(Y)-w(Co)/w(Y)图解(图3f)显示,第四系地层整体和绝大部分第四系地层表土深层土壤处于北祁连水系沉积物附近,或介于北祁连水系沉积物与北祁连蛇绿岩水系沉积物之间,富集基性组分,即其主要源于北祁连;少部分黑河河道北的第四系地层接近于龙首山水系沉积物,或受风成作用和风化残积作用影响而趋于接近龙首山岩石样品成分,富集酸性组分,如上更新统河道北砂砾层(Qp3pln)、全新统河道北冲洪积层(Qhalpln)和全新统河道北坡残积层(Qhdeln)(图3a),主要源于龙首山。在w(Ca)/w(Al)-w(Si)/w(Al)图解中(图3b),上更新统河道北砂砾层(Qp3pln)、全新世黄土(Qheol)等沉积层的w(Si)/w(Al)均大于7.0,并且黄土成分(Qheol)接近于龙首山水系沉积物(LSSS),表明龙首山水系沉积物的成分部分地来源于风成砂。

w(Zn)/w(Ni)-w(Co)/w(Ni)图解中(图3c),表土深层土壤异常H3处于北祁连岩石(NQL)与北祁连蛇绿岩水系沉积物(NQOS)之间;w(Pb)/w(Cd)-w(Zn)/w(Cd)图解(图3e)和w(Pb)/w(Y)-w(Co)/w(Y)图解显示,H2、H3、H4、H5、NQL、NQLS和NQOS基本呈线性排列,即围绕张掖市区的H3异常除与西北侧的H2、北祁连水系沉积物和北祁连蛇绿岩有关外,还与位于其东南侧的H4和H5有关,表明除西北风的搬运作用外,夏秋季(7月)的东南风在重金属迁移中发挥了作用;这一点得到黑河流域季节性水质分析结果佐证,水中的Cd、Zn和Hg在7月份最高,Pb、Cr、Cu和As在7月份较低[44]

3.6 物质来源综合分析

张掖盆地自第四纪以来承受了巨厚的松散堆积物,呈NW向带状分布,粒度自两侧向中心由粗变细,地貌上形成一倾斜平原。前人认为盆地物质皆取于祁连山、北山两地[40],但从元素在区域地质单元中的分配状况、区域主成分异常和碱性条件下稳定元素混合模型图解可知,盆地土壤主要来源于祁连山,少部分黑河河道北第四纪地层源于龙首山,不能排除人类活动和风成作用的影响。

山地水系沉积物是盆地土壤的直接来源。与周围主要地质单元的水系沉积物相比,盆地表土层深部土壤较北祁连和龙首山均富集Hg和Cr,较北祁连贫化但较龙首山富集Cd和As。结合稳定元素对比值图解判断,重金属Zn、Cd和As主要源于北祁连;Pb在河道北岸上更新统砂砾层和全新统残坡积层富集,指示其来源于龙首山;重金属Hg和Cr显著富集于盆地的表土层深部土壤中,难以完全用机械混合模型解释,主要与人类活动有关。

碱性条件下稳定元素混合模型图解显示,盆地表土层深部土壤中的H3异常与西北侧的H2、东南侧的H4和H5、北祁连水系沉积物和北祁连蛇绿岩有关,表明除西北风的搬运作用外,夏秋季(7月)的东南风在重金属迁移中发挥了作用。

4 结论

1)与全国土壤背景值相比,张掖盆地表土层深部土壤中重金属元素Cu和Cd富集,Zn和Mo贫化;其他富集元素或化合物中包含CaO、MgO、P、Sr、Ba,反映了钙成土的成分特征。与同时期耕作层土壤相比,重金属元素Cr显著富集,Cu、Zn、Mo、Pb和As显著贫化。

2)物质来源综合分析表明,Zn、Cd和As主要源于北祁连,Pb来源于龙首山,Hg和Cr主要与人类活动有关。

3)重金属元素在上更新统和全新统河道北沉积层中相对贫化,对应于晚更新世剧烈的新构造运动。下—中更新统富集重金属Cr、Cd或Cu;全新统河道南沉积层全面富集重金属Cu、Cr和Cd;Hg仅在全新统河道南洪积层中富集。该现象大致表明,重金属在表土层深部土壤中的富集程度与人类活动强度呈正相关,与新构造运动强度呈负相关。

4)碱性条件下稳定元素混合模型图解表明,除西北风的搬运作用外,夏秋季(7月)的东南风在重金属迁移中发挥了作用。

致谢

甘肃省地质学会及甘肃省地质调查院的各级领导在文献查阅和学术交流方面给予了支持,在此表示衷心感谢!

参考文献

中国营养学会. 中国居民膳食营养素参考摄入量(2013年修订版)[M]. 北京: 科学出版社, 2014.

[本文引用: 1]

Chinese Nutrition Society. Chinese dietary reference intakes(2013 revision edition)[M]. Beijing: Science Press, 2014.

[本文引用: 1]

生态环境部, 国家市场监督管理总局. GB 15618—2018土壤环境质量农用地土壤污染风险管控标准(试行)[S]. 北京: 中国环境出版集团, 2018.

[本文引用: 2]

Ministry of Ecology and Environment of the People's Repullic of China,State Administration for Market Regulation. GB 15618—2018 Soil environmental quality-risk control standard for soil contamination of agricultural land(for trial implementation)[S]. Beijing: China Enviromental Publishing Group, 2018.

[本文引用: 2]

汪春鹏, 尤建功, 孙浩, .

辽阳市土壤重金属含量特征及潜在风险评价

[J]. 地质通报, 2021, 40(10):1680-1687.

[本文引用: 1]

Wang C P, You J G, Sun H, et al.

Characteristics and potential risk assessment of heavy metal contents in urban soil,Liaoyang City

[J]. Geological Bulletin of China, 2021, 40(10):1680-1687.

[本文引用: 1]

孟飞, 刘敏, 史同广.

上海农田土壤重金属的环境质量评价

[J]. 环境科学, 2008, 29(2):428-433.

[本文引用: 1]

Meng F, Liu M, Shi T G.

Evaluation on environmental quality of heavy metals in agricultural soils of Shanghai

[J]. Environmental Science, 2008, 29(2):428-433.

[本文引用: 1]

燕鸿鹏.

微波消解—电感耦合等离子体质谱法同时测定垃圾渗滤液中8种生物毒性元素

[J]. 化学分析计量, 2019, 28(6):35-38.

[本文引用: 1]

Yan H P.

Simultaneous determination of 8 kinds of biotoxicity elements in landfill leachate by inductively coupled plasma mass spectrometry with microwave digestion

[J]. Chemical Analysis and Meterage, 2019, 28(6):35-38.

[本文引用: 1]

侯格平.

张掖地区农田土壤农化性状测试结果与分析

[J]. 甘肃农业科技, 1995(7):31-32.

[本文引用: 4]

Hou G P.

Test results and analysis of agrochemical characteristics of farmland soil in Zhangye area

[J]. Gansu Agricultural Science and Technology, 1995(7):31-32.

[本文引用: 4]

甘肃地质矿产局物探队.

张掖幅(J-47-Ⅺ)、山丹幅(J-47-Ⅻ)地球化学图说明书

[R]. 兰州: 甘肃省地矿局第二地质矿产勘查院,1990.

[本文引用: 2]

The Geophysical Exploration Team of Bureau of Geology and Mineral Resources of Gansu Province.

Direction of Zhangye map-sheet(J-47-Ⅺ) and Shandan map-sheet (J-47-Ⅻ) geochemical map

[R]. Lanzhou: The Second Institute of Geology and Mineral Resources Exploration of BGMR of Gansu Province,1990.

[本文引用: 2]

甘肃地矿局地球化学探矿队.

酒泉幅(J-47-Ⅲ)、祁连山幅(J-47-Ⅸ)地球化学图说明书

[R]. 兰州: 甘肃省地矿局第二地质矿产勘查院,1995.

[本文引用: 2]

The Geochemical Exploration Team of Bureau of Geology and Mineral Resources of Gansu Province.

Direction of Jiuquan map-sheet(J-47-Ⅲ) and Qilianshan map-sheet (J-47-Ⅸ) geochemical map

[R]. Lanzhou: The Second Institute of Geology and Mineral Resources Exploration of BGMR of Gansu Province,1995.

[本文引用: 2]

赵良菊, 肖洪浪, 郭天文, .

甘肃省河西灌漠土微量元素的空间变异特征

[J]. 水土保持学报, 2004, 18(5):27-30,34.

[本文引用: 1]

Zhao L J, Xiao H L, Guo T W, et al.

Spatial variabilitiy of trace elements of irrigated desert soil in Zhangye and Wuwei,Gansu Province

[J]. Journal of Soil and Water Conservation, 2004, 18(5):27-30,34.

[本文引用: 1]

赵翠翠, 南忠仁, 刘晓文, .

绿洲农田土壤主要微量元素的影响因素及分布特征研究——以张掖甘州区和临泽县为例

[J]. 干旱区资源与环境, 2010, 24(10):127-132.

[本文引用: 1]

Zhao C C, Nan Z R, Liu X W, et al.

Spatial distribution and affecting factors of main trace elements in oasis cropland—A case of Ganzhou District and Linze of Zhangye

[J]. Journal of Arid Land Resources and Environment, 2010, 24(10):127-132.

[本文引用: 1]

赵蕊. 河西地区主要绿洲城市农田土壤重金属污染研究[D]. 兰州: 兰州大学, 2020.

[本文引用: 2]

Zhao R. Study on heavy metal pollution in farmland soil of main oasis cities in Hexi Region[D]. Lanzhou: Lanzhou University, 2020.

[本文引用: 2]

刘文辉.

甘肃省张掖—永昌地区土壤有机碳密度算及其空间分布特征

[J]. 物探与化探, 2013, 37(5):883-888.

[本文引用: 1]

Liu W H.

The soil organic carbon density and its distribution charactoristics in Zhangye-Yongchang area,Gansu Province

[J]. Geophysical and Geochemical Exploration, 2013, 37(5):883-888.

[本文引用: 1]

任晓辉, 高宗军, 安永会, .

张掖市甘州区北部土壤重金属污染特征及生态风险评价

[J]. 干旱区资源与环境, 2020, 34(7):163-169.

[本文引用: 3]

Ren X H, Gao Z J, An Y H, et al.

Pollution characteristics and ecological risk assessment of soil heavy metals in northern Ganzhou District,Zhangye City

[J]. Journal of Arid Land Resources and Environment, 2020, 34(7):163-169.

[本文引用: 3]

王磊, 卓小雄, 吴天生, .

基于1:25万和1:5万土地质量地球化学调查评价的土壤元素累积趋势预测——以广西南宁市西乡塘区为例

[J]. 物探与化探, 2023, 47(1):1-13.

[本文引用: 1]

Wang L, Zhuo X X, Wu T S, et al.

Prediction of the soil element accumulation trends based on 1:250,000 and 1:50,000 geochemical surveys and assessments of land quality:A case study of Xixiangtang District,Nanning City,Guangxi Zhuang Autonomous Region

[J]. Geophysical and Geochemical Exploration, 2023, 47(1):1-13.

[本文引用: 1]

Fu K D, Gao J P, Fang X M, et al.

Relationship model of sediment grain size and Tibetan Plateau uplift in middle-west parts of Qilian Mountain

[J]. Science in China Series D:Earth Sciences, 2001, 44(1):210-217.

[本文引用: 1]

郑文俊, 袁道阳, 何文贵.

祁连山东段天桥沟—黄羊川断裂古地震活动习性研究

[J]. 地震地质, 2004, 26(4):645-657.

[本文引用: 1]

天桥沟-黄羊川断裂位于祁连山东段主峰冷龙岭以东,是祁连山东段的重要活动断裂之一。该断裂以关家台为界分为东西2段,全新世以来均有过明显的活动。沿断裂开挖了6个古地震探槽,通过综合对比得到了该断裂全新世以来的7次古地震事件和1次历史地震事件,其年代分别为事件Ⅰ(10743±343)aBP,事件Ⅱ(9038±39)aBP,事件Ⅲ(7050±577)aBP,事件Ⅳ(4847±185)aBP,事件Ⅴ(3562±190)aBP,事件Ⅵ(2476±194)aBP,事件Ⅶ(1505±253)aBP,事件Ⅷ为1927年古浪8级大地震。这表明该断裂可能也参与了1927年古浪8级地震的活动。各次古地震事件在时空分布上相对较均匀,大致具有准周期复发的特征。

Zheng W J, Yuan D Y, He W G.

Characteristics of palaeo-earthquake activity along the active Tianqiaogou-Huangyangchuan fault on the eastern section of the Qilianshan Mountains

[J]. Seismology and Geology, 2004, 26(4):645-657.

[本文引用: 1]

Li Y L, Yang J C, Tan L H, et al.

Impact of tectonics on alluvial landforms in the Hexi Corridor,Northwest China

[J]. Geomorphology, 1999, 28(3/4):299-308.

[本文引用: 2]

程麟生, 陈玉春, 李素华, .

黑河地区行星边界层大气的气候分析

[J]. 高原气象, 1990, 9(2):158-168.

[本文引用: 1]

分析指出:气温和比湿的季节变化基本上呈峰谷相当波型;各月气温和比湿的直减率分别小于和略大于自由大气的直减率。整层各月为准无辐散和弱有旋的西北气流,风速的季节变化在近地层也呈谷峰相当波型,其振幅随高度迅速增强,但位相恰与温、湿波型相反。张掖单站分时次的月平均资料分析表明,风向、风速和层结稳定度都有明显的气候日变化;当考虑湿度层结时,夏季7月19时的平均层结是真潜不稳定,其余季节和时次仍为稳定层结。扩展域边界层月平均温、湿、风场的分析指出,黑河地区近地层在1、4、10月基本上位在平浅温度槽区,而7月却处在纬向水平温度梯度矢端;该区比湿7月相对最高,而其余各月很低;全域近地层流场仅7月稍复杂点,黑河试验区位于弱辐合流场中,其余月份黑河地区边界层平均基本上为平直西北气流所控制。

Cheng L S, Chen Y C, Li S H, et al.

Climatic analyses of the planetary boundary layer atmosphere in the Heihe Region

[J]. Plateau Meteorology, 1990, 9(2):158-168.

[本文引用: 1]

In this paper, the climate characters of the temperature, humidity and wind fields on the planetary boundary layer (PBL) over the Heihe region and its neighbourhood have been analysed utilizing the multi-year monthly mean data at grided points and some sta tions of the area. The results indicate that the seasonal variations of the temperature and specific humidity on the PBL appear a waveform with basically equivalent value for the peak and valley; the lapse rates of the temperature and specific humidity on the PBL for each month are less and large than those on the free atmosphere, respectively. There is a northwest flow with quasi-nondivergence and weak rotation in the whole PBL. The seasonal variation of wind speed also appears a waveform with a equivalent value for the peak and valley in the surface layer, the wave amplitude increases rapidly with height, however, the phase is just contrary to the waveform of the temperature and specific humidity. The analyses of the monthly mean data at the Zhanye station for 07-and 19-hrs. (BLT) indicate that there is a pronounced climatically diurnal variation for the wind direction, wind speed and stratified stability. The monthly mean stratification only at 19(BLT) in July is true potential instability when the stratification of the temperature and humidity in the PBL was analysed at the same time, in the rest seasons and times are still stable stratification. The briefly analyses of monthly mean fields of the wind, temperature and specific humidity in the PBL of extension domain indicate that the surface layer of the Heihe region in the January, April, October is located at the shallow temperature trough area, however, the region in July is just located at the end of zonal temperature gradient vector; the specific humidity in July in the region is the a highest, the other months are very low; the streamlines on the surface layer in extension domain only in July are something complex, the surface layer over Heihe region is located a weak convergence flow field; the PBL over the Heihe region for rest months are basically controlled by the straight north west flow.

Yang D L, Liu W, Wang J P, et al.

Wind erosion forces and wind direction distribution for assessing the efficiency of shelterbelts in Northern China

[J]. Aeolian Research, 2018,33:44-52.

[本文引用: 1]

陈启新.

地形高差对风速影响的探讨

[J]. 山西水利科技, 2002(1):10-12.

[本文引用: 1]

Chen Q X.

Discussing into influence of topographic height difference on wind velocity

[J]. Shanxi Hydrotechnics, 2002(1):10-12.

[本文引用: 1]

张晓雅, 赵锐锋, 张丽华, .

不同生态保护地植物特征和土壤性质的对比研究——以黑河中游湿地为例

[J]. 生态学报, 2020, 40(9):3027-3039.

[本文引用: 1]

Zhang X Y, Zhao R F, Zhang L H, et al.

Comparative study of plant characteristics and soil properties in different ecological protected areas:A case study of middle reaches of the Heihe River

[J]. Acta Ecologica Sinica, 2020, 40(9):3027-3039.

[本文引用: 1]

秦晓燕.

张掖市城市湿地土壤盐分、pH值和含水量的空间异质性分析

[J]. 地下水, 2011, 33(1):8-11.

[本文引用: 1]

Qin X Y.

Zhangye city wetland soil salinity,PH value and the spatial heterogeneity of water content

[J]. Ground Water, 2011, 33(1):8-11.

[本文引用: 1]

张鑫. 安徽铜陵矿区重金属元素释放迁移地球化学特征及其环境效应研究[D]. 合肥: 合肥工业大学, 2005.

[本文引用: 1]

Zhang X. Geochemical characteristics and environmental effects of heavy metal elements release and migration in Tongling mining area,Anhui Province[D]. Hefei: Hefei University of Technology, 2005.

[本文引用: 1]

黄璜. 绿洲农田土壤中主要微量元素的地球化学特征及环境影响研究[D]. 兰州: 兰州大学, 2010.

[本文引用: 1]

Huang H. Study on geochemical characteristics and environmental impact of major trace elements in oasis farmland soil[D]. Lanzhou: Lanzhou University, 2010.

[本文引用: 1]

黄成敏, 王成善.

风化成土过程中稀土元素地球化学特征

[J]. 稀土, 2002, 23(5):46-49.

[本文引用: 3]

Huang C M, Wang C S.

Geochemical features of rare earth elements in process of rock weathering and soil formation

[J]. Chinese Rare Earths, 2002, 23(5):46-49.

[本文引用: 3]

徐俊, 宋佳, 刘英, .

不同pH条件下有色冶炼厂周边道路尘及土壤中重金属释放特征

[J]. 湖北理工学院学报, 2018, 34(2):19-23.

[本文引用: 3]

Xu J, Song J, Liu Y, et al.

Release characteristics of heavy metal in road dust and soil around non-ferrous smelters under different pH conditions

[J]. Journal of Hubei Polytechnic University, 2018, 34(2):19-23.

[本文引用: 3]

杨春华.

残坡积土壤层中铁锰氧化物的吸附特性及其地球化学找矿意义

[J]. 地球科学, 1986, 11(4):423-430.

[本文引用: 3]

Yang C H.

Absorption characteristics of Fe-Mn oxides in residual soils and its significance in geochemical prospecting

[J]. Earth Sciences, 1986, 11(4):423-430.

[本文引用: 3]

梁俊, 赵政阳, 樊明涛.

陕西渭北苹果园土壤中汞、镉污染与分布特征研究

[J]. 农业工程学报, 2008, 24(3):209-213.

[本文引用: 3]

Liang J, Zhao Z Y, Fan M T.

Spatial distribution and pollution of mercury and cadmium in Weibei apple orchard soils of Shaanxi Province

[J]. Transactions of the Chinese Society of Agricultural Engineering, 2008, 24(3):209-213.

[本文引用: 3]

杨秀敏, 任广萌, 李立新, .

土壤pH值对重金属形态的影响及其相关性研究

[J]. 中国矿业, 2017, 26(6):79-83.

[本文引用: 4]

Yang X M, Ren G M, Li L X, et al.

Effect of pH value on heavy metals form of soil and their relationship

[J]. China Mining Magazine, 2017, 26(6):79-83.

[本文引用: 4]

路永正, 阎百兴.

重金属在松花江沉积物中的竞争吸附行为及pH的影响

[J]. 环境科学研究, 2010, 23(1):20-25.

[本文引用: 3]

Lu Y Z, Yan B X.

Competitive adsorption of heavy metals on Songhua River sediments and effect of pH

[J]. Research of Environmental Sciences, 2010, 23(1):20-25.

[本文引用: 3]

DZ/T 0167—1995区域地球化学勘查规范(1:200 000)[S].中华人民共和国地质矿产部, 1995.

[本文引用: 2]

DZ/T 0167—1995 Specification for regional geochemical exploration[S].Ministry of Geology and Mineral Resources, People's Republic of China, 1995.

[本文引用: 2]

冯治汉, 徐家乐.

甘肃省景观地球化学特征及区域化探工作方法研究

[J]. 地质与勘探, 2003, 39(6):2-5.

[本文引用: 1]

Feng Z H, Xu J L.

Landscape geochemistry features and working methods of regional geochemistry in Gansu Province

[J]. Geology and Exploration, 2003, 39(6):2-5.

[本文引用: 1]

凌坤跃, 温汉捷, 张正伟, .

白云岩风化剖面元素地球化学特征:对黔中九架炉组“三稀金属” 富集机制的启示

[J]. 岩石学报, 2019, 35(11):3385-3397.

[本文引用: 2]

Ling K Y, Wen H J, Zhang Z W, et al.

Geochemical characteristics of dolomite weathering profiles and revelations to enrichment mechanism of trace elements in the Jiujialu Formation,central Guizhou Province

[J]. Acta Petrologica Sinica, 2019, 35(11):3385-3397.

[本文引用: 2]

田洋, 赵小明, 王令占, .

鄂西南利川三叠纪须家河组地球化学特征及其对风化、物源与构造背景的指示

[J]. 岩石学报, 2015, 31(1):261-272.

[本文引用: 2]

Tian Y, Zhao X M, Wang L Z, et al.

Geochemistry of clastic rocks from the Triassic Xujiahe Formation,Lichuan area,southwestern Hubei:Implications for weathering,provenance and tectonic setting

[J]. Acta Petrologica Sinica, 2015, 31(1):261-272.

[本文引用: 2]

Langmuir C H, Vocke R D, Hanson G N, et al.

A general mixing equation with applications to Icelandic basalts

[J]. Earth and Planetary Science Letters, 1978, 37(3):380-392.

[本文引用: 2]

Banerjee R, Iyer S D.

Genetic aspects of basalts from the Carlsberg Ridge

[J]. Current Science, 2003,85:299-305.

[本文引用: 2]

何进忠, 姚书振.

新元古代以来甘肃西秦岭造山过程的地球化学证据及其成矿背景

[J]. 中国地质, 2011, 38(3):637-656.

[本文引用: 2]

He J Z, Yao S Z.

Geochemical evidence for the orogenic process of West Qinling in Gansu since Neoproterozoic and its metallogenic background

[J]. Geology in China, 2011, 38(3):637-656.

[本文引用: 2]

徐争启, 倪师军, 庹先国, .

潜在生态危害指数法评价中重金属毒性系数计算

[J]. 环境科学与技术, 2008, 31(2):112-115.

[本文引用: 1]

Xu Z Q, Ni S J, Tuo X G, et al.

Calculation of heavy metals' toxicity coefficient in the evaluation of potential ecological risk index

[J]. Environmental Science & Technology, 2008, 31(2):112-115.

[本文引用: 1]

魏复盛, 陈静生, 吴燕玉, .

中国土壤环境背景值研究

[J]. 环境科学, 1991, 12(4):12-19.

[本文引用: 5]

Wei F S, Chen J S, Wu Y Y, et al.

Study on the background contents on 61 elements of soils in China

[J]. Environmental Science, 1991, 12(4):12-19.

[本文引用: 5]

甘肃省地质局.

J-47-Ⅺ(张掖)幅区域地质测量报告

[R]. 兰州: 甘肃省地质矿产局, 1973,44-45.

[本文引用: 2]

Geological Bureau of Gansu Province.

J-47-Ⅺ(Zhangye)map-sheet regional geological survey report

[R]. Lanzhou: BGMR of Gansu Province, 1973,44-45.

[本文引用: 2]

麦尔耶姆·亚森, 买买提·沙乌提, 尼格拉·塔什古拉提, .

渭干河—库车河绿洲土壤重金属分布特征与生态风险评价

[J]. 农业工程学报, 2017, 33(20):226-233.

[本文引用: 1]

Maieryemu·Yasen, Mamat·Shawuti, Nigela·Tashigulati, et al.

Distribution of heavy metal pollution and assessment of its potential ecological risks in Ugan-Kuqa River Delta of Xinjiang

[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(20):226-233.

[本文引用: 1]

韩伟, 王成文, 彭敏, .

川南山区土壤与农作物重金属特征及成因

[J]. 环境科学, 2021, 42(5):2480-2489.

[本文引用: 2]

Han W, Wang C W, Peng M, et al.

Characteristics and origins of heavy metals in soil and crops in mountain area of southern Sichuan

[J]. Environmental Science, 2021, 42(5):2480-2489.

[本文引用: 2]

陈红. 植物叶片磁性特征及其对城市颗粒物污染的指示[D]. 兰州: 兰州大学, 2020.

[本文引用: 2]

Chen H. Magnetic characteristics of plant leaves and its indication to urban particulate pollution[D]. Lanzhou: Lanzhou University, 2020.

[本文引用: 2]

鲍广强. 基于GIS的黑河流域重金属分布特征及污染风险评估[D]. 银川: 宁夏大学, 2018.

[本文引用: 1]

Bao G Q. Distribution characteristics and pollution risk assessment of heavy metals in Heihe River Basin based on GIS[D]. Yinchuan: Ningxia University, 2018.

[本文引用: 1]

/

京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com