E-mail Alert Rss
 

物探与化探, 2024, 48(2): 443-450 doi: 10.11720/wtyht.2024.1251

方法研究·信息处理·仪器研制

不同方位各向异性反演技术对比和总结

梁志强,, 李弘

中石化石油物探技术研究院有限公司,江苏 南京 211103

Comparison and summary of different azimuthal anisotropy-based inversion techniques

LIANG Zhi-Qiang,, LI Hong

Geophysical Research Institute Co.,Ltd.,SINOPEC,Nanjing 211103,China

责任编辑: 叶佩

收稿日期: 2023-06-19   修回日期: 2024-01-15  

基金资助: 国家自然科学基金项目“海相深层油气富集机理与关键工程技术基础研究”(U19B6003)

Received: 2023-06-19   Revised: 2024-01-15  

作者简介 About authors

梁志强(1980-),男,硕士,高级工程师,现主要从事与复杂储层预测及油藏描述相关的研究工作。Email:liangzq.swty@sinopec.com

摘要

随着“两宽一高”地震采集技术的发展,基于方位各向异性理论的叠前P波裂缝反演技术的应用也越来越多。方位各向异性反演可以得到裂缝方位和裂缝强度,但是不同的反演技术得到的表征裂缝强度的参数各不相同,反演结果也常常有所差异,因此就造成了裂缝各向异性反演结果的不唯一性,进而造成谁才是“正确的”这种困惑和疑问。本文从Thomsen各向异性理论出发,通过裂缝模型(Hudson薄币模型、Schoenberg线性滑动模型)之间的相互关系,在不同的裂缝反演技术(VVAZ、Ruger近似和傅立叶级数)中建立各向异性的参数联系,给出了不同方位各向异性裂缝反演结果的真实含义和数学表达,并对不同反演技术与裂缝模型参数之间的联系进行了总结,进一步深化了方位各向异性裂缝反演的研究,为基于“两宽一高”数据开展大规模的裂缝检测奠定坚实的理论和技术基础。

关键词: 方位各向异性; 裂缝反演; VVAZ; Ruger近似; 傅立叶级数

Abstract

The progress in seismic acquisition techniques characterized by wide azimuths,wide frequency bands,and high densities has greatly promoted the application of the prestack P-wave fracture inversion technique based on the azimuthal anisotropy theory.Azimuthal anisotropy-based inversion can yield the azimuths and intensities of fractures.However,different inversion techniques yield different parameters for fracture intensity characterization,resulting in inconsistent inversion results.Consequently,the azimuthal anisotropy-based inversion results of fractures are non-unique,leading to confusion about accurate results.Based on the Thomsen anisotropy theory,as well as the interrelationships between fracture models(the Hudson coin model and the Schoenberg linear sliding model),this study established the connections of anisotropic parameters between different fracture inversion techniques(VVAZ,Ruger's approximation,and Fourier series),presenting the real meanings and mathematical expressions of results from different azimuthal anisotropy-based fracture inversion techniques.Additionally,this study summarized the relationships of parameters between different inversion techniques and fracture models,further deepening the research on azimuthal anisotropy-based fracture inversion.This study lays solid theoretical and technical foundations for large-scale fracture detection based on the seismic data obtained using the seismic acquisition techniques featuring wide azimuths,wide frequency bands, and high densities.

Keywords: azimuthal anisotropy; fracture inversion; VVAZ; Ruger's approximation; Fourier series

PDF (3440KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

梁志强, 李弘. 不同方位各向异性反演技术对比和总结[J]. 物探与化探, 2024, 48(2): 443-450 doi:10.11720/wtyht.2024.1251

LIANG Zhi-Qiang, LI Hong. Comparison and summary of different azimuthal anisotropy-based inversion techniques[J]. Geophysical and Geochemical Exploration, 2024, 48(2): 443-450 doi:10.11720/wtyht.2024.1251

0 引言

随着国内外“两宽一高”采集技术的发展和普及,基于宽方位道集的P波方位各向异性裂缝预测技术也越来越成熟[1-2]。P波方位各向异性技术,顾名思义,是基于纵波方位的变化规律来计算各向异性参数;与之相对应的是横波各向异性技术,它是利用快慢横波的分裂来计算各向异性参数的[3-4]。P波方位各向异性技术按地震数据的类型可以分为速度(或者时差[5])和振幅两类:基于P波方位速度变化的技术一般称之为VVAZ(velocity variations with azimuth,速度随方位角变化)[6-7],后来又发展了基于TTI(tilted transverse isotropy,倾斜横向各向同性)介质的方位时差技术[5]等。基于P波方位振幅变化的技术一般称之为AVAZ(amplitude variation with azimuth,振幅随方位角变化),基于AVAZ各向异性反演技术的类型较多,早期为椭圆拟合技术[8];之后又发展了Ruger近似公式[9-11]和方位傅立叶级数反演技术[12];这些年又发展了基于裂缝岩石物理模型的AVAZ反演技术[13-14]等。从基本的公式来说,不同的反演技术由于基于不同的TI介质理论,不同的地震道集数据、技术路线以及反演结果均有所差异:VVAZ反演的结果直接为Thomsen各向异性参数δ来表示裂缝强度;椭圆拟合技术一般以长轴除以短轴为裂缝强度;Ruger近似反演的结果以各向异性梯度来表示,而方位傅立叶级数反演的各向异性梯度又与Ruger近似反演的各向异性梯度并不完全相同,因此就造成了裂缝各向异性反演结果的不唯一性,进而造成谁才是“正确的”这种困惑和疑问[15]。本文从最基础的Thomsen各向异性基本理论出发[16],通过分析不同裂缝介质的简化模型(Hudson薄币模型[17]、Schoenberg线性滑动模型[18]),在不同的裂缝反演技术(VVAZ、Ruger近似和傅立叶级数)之间建立各向异性的参数联系,给出了每一个方位各向异性裂缝反演结果的真实含义和数学表达,并对不同反演技术与裂缝模型参数之间的联系进行了总结,进一步深化方位各向异性裂缝反演的研究,为基于“两宽一高”数据开展大规模的裂缝定量检测奠定了坚实的理论和技术基础。

1 方位各向异性的基本理论

1.1 Thomsen各向异性参数

众所周知,弹性矩阵c决定了介质的弹性性质。在各向同性介质情况下,c11=c33, c55=c66,c13=c11-2c66。而对于HTI(horizontal transverse isotropy,水平横向各向同性)介质来说,各向异性的强度暗含在弹性系数中(图1)。

图1

图1   HTI介质模型

Fig.1   HTI media model


在HTI 介质模型下,Thomsen 参数可以由公式(1)的弹性系数来表达:

εv=c11-c332c33γv=c66-c552c44δv=c13+c442-c33-c4422c33c33-c44,

式中:ε(v)δ(v)γ(v)均为与HTI介质有关的Thomsen系数。当介质为各向同性时,ε(v)δ(v)γ(v)均为0;当介质为HTI介质时,在不同的岩石物理条件下,ε(v)δ(v)γ(v)的理论值范围为(0~0.5)[15]。式(1)中,参数ε(v)描述了水平P波速度和垂向P波速度的微小差别,δ(v)表示了P波在入射角方向上快慢P波的速度差异。γ(v)则定义了快慢横波在水平方向上的差异。

1.2 Hudson薄币裂缝模型

Hudson薄币状裂缝模型(下称薄币模型)描述的是在完全各向同性的岩石里,发育着类似平行结构的硬币状裂缝,且裂缝的形状呈现椭圆形或扁球形(图2),同时各个裂缝之间是相互孤立的,因此薄币模型并不考虑裂缝之间可能的流体流动。它将含裂缝介质的弹性系数等效为由各向同性背景介质中的弹性系数以及由于裂缝的存在而产生的一阶扰动量和二阶扰动量之和,薄币模型可以把裂缝的微观参数(如裂缝密度、裂缝半径、裂缝纵横比等)与裂缝的宏观性质(弹性常数)联系起来。

图2

图2   Hudson薄硬币形状裂缝模型

Fig.2   Hudson’s penny-shaped crack model


薄币模型中裂缝密度的概念指的是体密度的概念(即裂缝椭球的体积占整个岩石的比例),因此可以表达为

ξ= NVa3= 3ϕ4πχ,

式中:a是裂缝扁球体的半径;NV是岩石单位体积中薄币裂缝的个数;ϕ是裂缝孔隙度;χ是椭圆裂缝中长轴和短轴的纵横比。

1.3 Schoenberg线性滑动裂缝模型

Schoenberg线性滑动模型(下称线性滑动模型)是由岩石物理领域中常见的Backus细层层状介质模型发展而来,它使用柔度来描述裂缝的参数,柔度是刚度的倒数,其中裂缝岩石的总柔度是背景中非裂缝岩石的柔度加上裂缝造成的额外柔度之和[18]。(图3)。

图3

图3   线性滑动模型

Fig.3   Linear-slip model


ΔNΔT分别代表裂缝的法向强度和切向强度,法向强度ΔN描述了裂缝岩石对法向力(将断裂面推到一起的力)的反应,并将受到流体含量(充满水的裂缝比充满气体的裂缝更难压缩)、裂缝密度和孔径的影响。切向强度ΔT表示断裂岩石对剪切力(一种试图使断裂面相互滑动的力)的反应,其不受流体含量的影响。这些无量纲参数的范围是0~1;断裂柔度为0意味着裂缝对岩石的刚度没有影响,1则意味着岩石会崩塌(没有法向或切向刚度)。其表达式如式(3)所示:

ΔN=EN1+EN=λ+2μKN1+λ+2μKNΔT=ET1+ET=μKT1+μKT,

式中:KN为正向柔度;KT是沿不同坐标轴的切向柔度。ENET为非负的、无量纲的与裂缝有关的柔度参数。

1.4 两种裂缝模型与Thomsen参数之间的关系

与Thomsen各向异性参数相比,线性滑动模型和薄币模型具有明显的优点:①通过对裂缝作更多的假设,缩小了参数解的空间;②直接将各向异性参数与裂缝属性联系起来;③用2个变量而不是3个变量进行参数化。在仅考虑薄币模型一阶校正情况时,线性滑动模型和薄币模型之间可以用式(4)来转换[19-21]:

ΔT=16ξ3(3-2g)ΔN=4ξ3g(1-g)(1+Ω)ΔNdry=4ξ3g(1-g),

式中:ξ是薄币模型中的裂缝密度;Ω是描述了流体和孔径长宽比强化效应的一项参数;g为横纵波速度比的平方,即g=(Vs/Vp)2

Bakulin等 [22]展示了HTI介质中各向异性参数(ε(v)δ(v)γ(v))与线性模型参数(ΔNΔT)之间的关系。如式(5)所示:

ε(v)-2g(1-g)ΔNγ(v)=-12ΔTδ(v)-2g(1-2g)ΔN+ΔT

根据薄币模型和线性滑动模型之间的参数关系,可以为不同裂缝密度、裂缝流体及不同充填物时裂缝岩石物理参数的变化等提供理论依据。

2 VVAZ裂缝反演技术

VVAZ顾名思义,就是计算速度随方位角变化的各向异性技术,它的基本原理是:在一组定量排列的垂直裂缝(即HTI介质)中,从动校正出发将旅行时表示为偏移距(入射角)和方位角的函数,进而计算出P波在裂缝中快方向(即沿着裂缝发育方向,各向同性)的NMO速度Vp_fast和慢方向(即垂直裂缝发育方向,各向异性)的NMO速度Vp_slow,进而计算出近似得到表征裂缝强度的各向异性参数。其公式可以表达为:

Vp_fast-Vp_slowVp_fast≈-δ(v),

式(6)为Thomsen参数的表达式,也可以用线性滑动理论表达为:

Vp_fast-Vp_slowVp_fast≈2g ΔT+(1-2g)ΔN

如果用薄币模型来表示,其表达式为:

Vp_fast-Vp_slowVp_fast8g34(3-2g)+(1-2g)g(1-g)(1+Ω)ξ 。

从式(6)到式(8)可以看出,在用Thomsen参数表达式时,VVAZ反演的裂缝各向异性强度仅仅与各向异性参数δ相关。在线性滑动理论表达式时,各向异性强度与切向强度ΔT呈现正相关,随着ΔT的增大而变大,但与纵横波速度比g和法向强度ΔN的关系则随着纵横波速度的不同而有所差异。在薄币模型表达式中,各向异性强度与裂缝密度ξ 呈现正相关,Ω的影响相对较小,这也是VVAZ反演的各向异性强度可以直接表征裂缝发育密度的证据之一。

VVAZ裂缝反演的计算步骤是:通过对方位—偏移距地震数据进行椭圆NMO速度分析,得到长轴和短轴动校正速度,实现方位NMO校正。具体步骤如下:

1)计算连续时间变化的静校正量,估算剩余旅行时间;

2)对于每个分析时间,对剩余旅行时间拟合一个椭圆剩余NMO面;

3)由此,计算椭圆叠加速度和方位:快叠加速度、慢叠加速度、快叠加速度方位角;

4)应用椭圆叠加速度校正数据。

从上述基本原理和计算步骤可以发现,VVAZ的速度方位各向异性要比AVAZ振幅方位各向异性的解释简单。VVAZ属性是层属性,不是界面属性;由于VVAZ的分辨率受速度分析点数量的限制,AVAZ的分辨率则跟地震带宽的分辨率有关,因此VVAZ反演结果的分辨率(频率)要比AVAZ低(图4)[15]。在实际工区的应用研究中,开展VVAZ的叠前地震道集需要保留方位时差数据,而开展AVAZ反演则不需要保留时差数据,并且需要在反演的解释性预处理中开展强拉平甚至二次拉平来避免时差对方位振幅的影响[23]。由于VVAZ和AVAZ的物理基础有所不同,VVAZ反演的基础数据是方位速度的差异,AVAZ反演的基础数据是方位振幅的差异,因此两者提供的各向异性结果应该看作是不同和独立的信息。

图4

图4   VVAZ与AVAZ反演结果频率谱结果对比

Fig.4   Comparison of frequency spectrum results between VVAZ and AVAZ inversion results


3 AVAZ裂缝反演技术

3.1 Ruger近似公式法

常规的基于HTI介质的Ruger公式可以表达为[11]:

R(θ,φ)= 12ΔZZ¯+ 12Δαα¯-2β¯α¯2ΔGG¯+Δδv+22β¯α¯2Δγcos2φ-φmsin2θ+
12Δαα¯+Δε(v)cos4φ+Δδ(v)sin2φcos2φ×sin2θtan2θ,

在非超大入射角的情况下,式(9)可以简化为:

R(θi,φj)=Aiso+ Biso+Banisin2φani-φisosin2θ,

式中:R(θi,φj)为入射角为θi,方位角为φj的反射系数,i=1,2,…,N,j=1,2,…,M;φiso是各向异性面的方位;Aiso为各向同性截距;Bani为各向异性梯度;Biso为各向同性梯度。上述方程要反演4个参数Aiso,Bani,Bisoφiso,对于φiso而言,方程为一个非线性方程,通常进行线性化来进行求解。φiso代表裂缝的走向,反演的各向异性梯度Bani可以表示为线性滑动模型的基本参数ΔTΔNg之间的关系,如式(11)所示:

Bani=gΔT-1-2gΔN,

Bani的Thomsen参数表达式如式(12)所示:

Bani= 12Δδ(v)-8gΔγ(v),

Bani的薄币模型参数表达式如式(13)所示:

Bani4g34(3-2g)-(1-2g)g(1-g)(1+ΔΩ)Δξ,

式(11)~(13)可以表明:在线性滑动理论模型里,Ruger反演的各向异性梯度Bani与裂缝面水平和垂直的弹性差值ΔTΔN以及纵横波速度比g有关;在Thomsen参数中,Bani的大小同时受快慢P波的速度差异δ(v)和快慢横波的差异参数γ(v)的影响;在薄币模型参数中,Bani与裂缝密度ξ的变化呈正相关,这也是Bani可以直接表征裂缝密度的证据之一。

Ruger方程通过忽略了三阶项,是近偏移距的近似简化方程,图5是利用AVAZ预测裂缝的技术流程,与传统的VVAZ相比,它反演的各向异性梯度是层面的,因此精度较高,结果也较为稳定,在AVAZ反演技术中长期处于主流地位[24]。在实际地震工区开展AVAZ研究时,由于地震采集观测系统的限制以及资料处理方位保幅性要求的缺失,需要高度重视地震道集的预处理,常用的预处理技术包括宏面元分析、振幅照明补偿、时差二次校正、抛物线Radon滤波、道集反褶积、层间多次波处理、叠前去噪等,并在AVAZ反演前选择合适的振幅道集或者属性道集[22]

图5

图5   利用AVAZ预测裂缝的技术流程

Fig.5   The technical process of AVAZ fracture prediction


Ruger近似法的不足之处主要有两个方面:一是反演的方位存在90°的模糊性;二是反演的各向异性梯度Bani很难解释与量化,它是切向弱度和法相弱度的加权差。2011年,Downton等[12]引入了方位傅立叶级数的AVAZ反演技术,较好地解决了这两个问题。

3.2 傅立叶级数法

Ikelle[25]以及 Sayers等[26]指出可以用傅立叶级数来描述方位角反演的反射系数。由于傅立叶级数是加权正弦波的总和,每个正弦波都有自己的周期性,因此其权重被称为傅立叶系数,这些系数与偏移距(入射角)有关。因此就可以分析任何入射角的AVAZ反射系数。假设一组排列整齐,旋转不变的垂直断裂(即HTI介质),Downton等[12]将其方位纵波反射系数重新表示为傅立叶级数形式,表达式为:

RPPф,θ=r0+r2cos 2ф-фsym+
r4cos 4ф-фsym,

式中:RPPθ,φ是入射角为θ、方位角为ф的反射系数;r0r2r4分别为零阶、二阶、四阶的傅立叶系数,高于四阶的系数可以忽略不计。

其零阶、二阶和四阶表达式分别为:

r0=A0+B0sin2θ+C0sin2θtan2θr2=12Bani+181-χ2ΔδNtan2θsin2θr4=18κsin2θtan2θ,

式中:r0是各向同性项,其中A0B0C0分别是截距、梯度和曲率;r2表达式中,r2n=2余弦波的幅度。对于小入射角的情况下,r2与各向异性梯度Bani成正比,其各向异性梯度Bani的表达式为:

Bani2sin2θr2(θ) 。

r4n=4余弦波的幅值。仅仅使用r2在对称轴上有一些含糊不清,即存在反演裂缝方位的90°不确定性。通过包括更多的入射角和r4,可以解决对称轴的模糊性,并可以提高Bani的反演精度。此时Baniκ均可以表达为线性滑动模型参数ΔTΔN的加权差值,因此在四阶项参与的情况下,各向异性梯度时Bani可以表达为式(17):

BanigΔδT-(1-2g)ΔδNκ=gΔδT-gΔδN,

式(17)中Bani的表达式在近似的情况下与式(11)相同,相比较Ruger近似公式法得到单一的Bani而言,由于傅立叶级数展开式可以同时考虑二阶项和四阶项,因此反演的各向异性梯度Bani精度更高,并且可以将ΔTΔN解耦出来,得到ΔNΔT的精确解。

Ruger近似与傅立叶级数方法的对比示意如图6所示[12]图6a为在入射角为35°提取的振幅与方位角的曲线;图6b为傅立叶级数展开的振幅与方位角的曲线,红、绿、蓝分别代表它的零阶、二阶、四阶的振幅结果。图6a中,在0°~180°的方位角周期内,单一的振幅信号拥有两个不同的方位角结果,即Ruger近似公式法中的90°不确定性;而图6b中因为同时考虑傅立叶级数展开式的二阶项和四阶项,一个振幅信号只能得到唯一的方位角结果,这就解决了Ruger公式中的方位角不确定性问题。在实际地震资料的应用中,由于傅立叶级数方法中的二阶项和四阶项同时使用了振幅和相位的信息,因此需要在道集处理中同时考虑方位振幅以及方位相位的精度,以此来确保反演结果的稳定性和准确性。图7为Ruger近似与傅立叶级数法在页岩气中应用的一个实例[12],从裂缝强度和裂缝方位的反演结果来看:傅立叶级数法反演的裂缝强度明显更聚焦,噪声更小,连续性更强;而基于傅立叶级数反演的裂缝方位解决了Ruger近似中精度较低以及90°不确定性的问题,裂缝走向与该地区的最大水平应力(135°)更加一致。

图6

图6   Ruger近似(a)与傅立叶系数算法(b)展开对比

Fig.6   Comparison of Ruger style(a) and Fourier coefficients algorithm(b)


图7

图7   Ruger近似与傅立叶系数页岩气应用对比(据Downton修编[12])

Fig.7   Comparison of Ruger style and Fourier coefficients for shale gas applications(revised from Downton[12])


4 对比分析

通过分析不同裂缝介质的简化模型(Thomsen、薄币模型、线性滑动模型),在不同的方位各向异性裂缝反演技术(VVAZ、Ruger近似和傅立叶级数)之间建立各向异性的参数联系,并对于不同技术之间反演得到的裂缝参数差异等开展对比分析,如表1所示。

表1   方位各向异性裂缝反演技术对比汇总

Table 1  Summary of comparison of azimuthally anisotropic fracture inversion techniques

技术类型
属性参数
时差类振幅类
VVAZRuger近似傅立叶级数
数据旅行时振幅振幅
属性类型层间界面界面
各向异性方位
(裂缝方位)
明确的90°误差明确的
各向异性结果
(裂缝强度)
Vp_fast-Vp_slowVp_fastBaniBaniΔTΔN
参数关系Thomsen-δΔεΔTΔNΔεΔTΔN
线性滑动
模型
ΔTΔN
的加权和
ΔTΔN
的加权差分
ΔTΔN
薄币模型ε和ΩΔεΔΩΔεΔΩ
分辨率较低较高

注:表中的各个参数在上文中都可以找到,且都有较为明确的物理意义

新窗口打开| 下载CSV


1)VVAZ裂缝反演技术是层间属性,分辨率相对较低,但是方位角反演较为可靠,反演快慢P波变化指示的裂缝强度与Thomsen参数δ密切相关。

2)Ruger近似的裂缝反演技术是界面属性,可以针对每一个方位地震采样点进行计算,因此分辨率相对较高,但是反演的方位角存在90°不确定性,反演的裂缝强度(各向异性梯度)Bani为线性滑动理论ΔTΔN的加权差,但是无法将ΔTΔN完全分开。

3)傅立叶级数裂缝反演技术也是界面属性,该方法不仅解决了方位角90°的不确定性问题,而且由于同时考虑了二阶项和四阶项,因此反演的裂缝强度(各向异性梯度)Bani精度更高,并且可以将ΔTΔN解耦出来,得到ΔNΔT的精确解。

4)上述VVAZ、Ruger近似以及傅立叶级数方法下的基本公式均是基于HTI介质下推导的,当介质为TTI介质时,倾角对裂缝密度的反演也存在一定的影响[27],对于OA(orthogonality anisotropy,正交各向异性)介质而言,由于同时存在HTI和VTI两种介质,其相对应的各向异性参数更多,反射系数的解也更加复杂[28]

5 结论

不同的方位各向异性裂缝反演技术是在不同的采集观测系统下,基于不同的地震数据特征来开展的。在实际工区的应用研究中,单一的技术往往无法直接得到满意的裂缝强度检测结果,而是需要结合断裂—裂缝的地质成因、测井资料尤其是FMI的裂缝分析结果、考虑工区的岩石物理尤其是含裂缝各向异性岩石物理的基本情况,以及叠后地震裂缝高精度属性(如相干、曲率、蚂蚁等)进行综合分析和预测,这对提高裂缝定量检测的吻合率乃至钻井勘探的成功率,都具有非常重要的意义,这也是我们下一步的研究方向。

参考文献

曲寿利, 季玉新, 王鑫, .

全方位P波属性裂缝检测方法

[J]. 石油地球物理勘探, 2001, 36(4):390-397.

[本文引用: 1]

Qu S L, Ji Y X, Wang X, et al.

Seismic method for using full-azimuth P wave attribution to detect fracture

[J]. Oil Geophysical Prospecting, 2001, 36(4):390-397.

[本文引用: 1]

梁志强.

面向AVAZ反演的解释性处理技术在裂缝预测中的应用

[J]. 地球物理学进展, 2022, 37(5):1977-1984.

[本文引用: 1]

Liang Z Q.

Application of interpretive processing techniques for AVAZ inversion in fracture prediction

[J]. Progress in Geophysics, 2022, 37(5):1977-1984.

[本文引用: 1]

Bale R, Wright C.

Compensation for shear-wave anisotropy effects above a heavy oil reservoir

[C]// Calgary: 2009 CSPG CSEG CWLS GeoConvention,2009.

[本文引用: 1]

Kendall R, Wikel K.

Multicomponent time-lapse monitoring of bitumen recovery and geomechanical implications

[C]//San Antonio:SEG Technical Program Expanded Abstracts 2011. Society of Exploration Geophysicists, 2011.

[本文引用: 1]

梁志强, 王世星, 郝奇.

基于TTI介质的P波剩余时差裂缝检测技术正演模拟研究

[J]. 石油物探, 2013, 52(4):347-353.

DOI:10.3969/j.issn.1000-1441.2013.04.003      [本文引用: 2]

针对塔河油田碳酸盐岩储层中存在的高角度裂缝的检测问题,开展了基于倾斜对称轴的横向各向同性介质(TTI介质)的P波剩余时差裂缝检测技术研究。回顾了TTI介质及其方位NMO剩余时差的基础理论,计算了三维TTI介质中P波的相速度;开发了一套适用于叠前地震道集的P波剩余时差裂缝预测技术,详细论述了其技术流程和具体实现步骤;设计了TTI介质裂缝模型,利用有限差分法模拟计算模型的叠前方位地震道集,根据模拟数据提取的方位NMO剩余时差反演出裂缝发育强度和裂缝角度,与模型设计参数基本吻合,验证了基于TTI介质的P波剩余时差裂缝检测技术的有效性。

Liang Z Q, Wang S X, Hao Q.

Forward simulation of P-wave residual time difference crack detection technology based on TTI medium

[J]. Geophysical Prospecting for Petroleum, 2013, 52(4):347-353.

[本文引用: 2]

Davison C, Ratcliffe A, Grion S, et al.

Azimuthal velocity uncertainty:Estimation and application

[C]//San Antonio:SEG Technical Program Expanded Abstracts 2011. Society of Exploration Geophysicists, 2011.

[本文引用: 1]

Tsvankin I.

Reflection moveout and parameter estimation for horizontal transverse isotropy

[J]. Geophysics, 1997, 62(2):614-629.

DOI:10.1190/1.1444170      URL     [本文引用: 1]

Transverse isotropy with a horizontal axis of symmetry (HTI) is the simplest azimuthally anisotropic model used to describe fractured reservoirs that contain parallel vertical cracks. Here, I present an exact equation for normal‐moveout (NMO) velocities from horizontal reflectors valid for pure modes in HTI media with any strength of anisotropy. The azimuthally dependent P‐wave NMO velocity, which can be obtained from 3-D surveys, is controlled by the principal direction of the anisotropy (crack orientation), the P‐wave vertical velocity, and an effective anisotropic parameter equivalent to Thomsen's coefficient δ. An important parameter of fracture systems that can be constrained by seismic data is the crack density, which is usually estimated through the shear‐wave splitting coefficient γ. The formalism developed here makes it possible to obtain the shear‐wave splitting parameter using the NMO velocities of P and shear waves from horizontal reflectors. Furthermore, γ can be estimated just from the P‐wave NMO velocity in the special case of the vanishing parameter ε, corresponding to thin cracks and negligible equant porosity. Also, P‐wave moveout alone is sufficient to constrain γ if either dipping events are available or the velocity in the symmetry direction is known. Determination of the splitting parameter from P‐wave data requires, however, an estimate of the ratio of the P‐to‐S vertical velocities (either of the split shear waves can be used). Velocities and polarizations in the vertical symmetry plane of HTI media, that contains the symmetry axis, are described by the known equations for vertical transverse isotropy (VTI). Time‐related 2-D P‐wave processing (NMO, DMO, time migration) in this plane is governed by the same two parameters (the NMO velocity from a horizontal reflector and coefficient ε) as in media with a vertical symmetry axis. The analogy between vertical and horizontal transverse isotropy makes it possible to introduce Thomsen parameters of the “equivalent” VTI model, which not only control the azimuthally dependent NMO velocity, but also can be used to reconstruct phase velocity and carry out seismic processing in off‐symmetry planes.

Pech A, Tsvankin I, Grechka V.

Quartic moveout coefficient:3D description and application to tilted TI media

[J]. Geophysics, 2003, 68(5):1600-1610.

DOI:10.1190/1.1620634      URL     [本文引用: 1]

Nonhyperbolic (long‐spread) moveout provides essential information for a number of seismic inversion/processing applications, particularly for parameter estimation in anisotropic media. Here, we present an analytic expression for the quartic moveout coefficient A4that controls the magnitude of nonhyperbolic moveout of pure (nonconverted) modes. Our result takes into account reflection‐point dispersal on irregular interfaces and is valid for arbitrarily anisotropic, heterogeneous media. All quantities needed to compute A4can be evaluated during the tracing of the zero‐offset ray, so long‐spread moveout can be modeled without time‐consuming multioffset, multiazimuth ray tracing.

Rüger A. Reflection coefficients and azimuthal AVO analysis in anisotropic media[D]. Center for Wave Phenomena,Colorado School of Mines,1996.

[本文引用: 1]

Rüger A, Tsvankin I.

Using AVO for fracture detection:Analytic basis and practical solutions

[J]. The Leading Edge, 1997, 16(10):1429-1434.

DOI:10.1190/1.1437466      URL     [本文引用: 1]

Rüger A. Reflection coefficients and azimuthal AVO analysis in anisotropic media[M].Society of Exploration Geophysicists, 2002.

[本文引用: 2]

Downton J, Russell H.

Azimuthal Fourier coefficients:A simple method to estimate fracture parameters

[C]//San Antonio:SEG Technical Program Expanded Abstracts 2011. Society of Exploration Geophysicists, 2011.

[本文引用: 7]

陈怀震, 印兴耀, 张金强, .

基于方位各向异性弹性阻抗的裂缝岩石物理参数反演方法研究

[J]. 地球物理学报, 2014, 57(10):3431-3441.

DOI:10.6038/cjg20141029      [本文引用: 1]

裂缝储层岩石物理参数的准确获得对地下裂缝预测具有重要意义,而叠前地震反演是获得裂缝岩石物理参数的有效手段.本文从裂缝岩石物理等效模型的构建出发,从测井数据上估测了裂缝岩石物理参数,通过推导含裂缝岩石物理参数的方位各向异性弹性阻抗公式,探讨了基于方位各向异性弹性阻抗的裂缝岩石物理参数地震反演方法.实际工区地震数据应用表明,基于方位各向异性弹性阻抗的裂缝岩石物理参数反演方法合理、可靠,可以降低裂缝岩石物理参数估测的不确定性,为地下裂缝预测提供有力的依据.

Chen H Z, Yin X Y, Zhang J Q, et al.

Seismic inversion for fracture rock physics parameters using azimuthally anisotropic elastic impedance

[J]. Chinese Journal of Geophysics, 2014, 57(10):3431-3441.

[本文引用: 1]

陈怀震. 基于岩石物理的裂缝型储层叠前地震反演方法研究[D]. 青岛: 中国石油大学, 2015.

[本文引用: 1]

Chen H Z. Study on methodology of pre-stack seismic inversion for fractured reservoirs based on rock physics[D]. Qingdao: China University of Petroleum(East China), 2015.

[本文引用: 1]

Delbecq F, Downton J, LetiziaA M.

A math-free look at azimuthal surface seismic techniques

[J]. CSEG Recorder, 2013, 38(1):20-31.

[本文引用: 3]

Thomsen L.

Weak elastic anisotropy

[J]. Geophysics, 1986, 51(10):1954-1966.

DOI:10.1190/1.1442051      URL     [本文引用: 1]

Most bulk elastic media are weakly anisotropic. The equations governing weak anisotropy are much simpler than those governing strong anisotropy, and they are much easier to grasp intuitively. These equations indicate that a certain anisotropic parameter (denoted δ) controls most anisotropic phenomena of importance in exploration geophysics, some of which are nonnegligible even when the anisotropy is weak. The critical parameter δ is an awkward combination of elastic parameters, a combination which is totally independent of horizontal velocity and which may be either positive or negative in natural contexts.

Hudson J A.

Wave speeds and attenuation of elastic waves in material containing cracks

[J]. Geophysical Journal of the Royal Astronomical Society, 1981, 64(1):133-150.

[本文引用: 1]

Schoenberg M.

Elastic wave behavior across linear slip interfaces

[J]. The Journal of the Acoustical Society of America, 1980, 68(5):1516-1521.

DOI:10.1121/1.385077      URL     [本文引用: 2]

A model for an imperfectly bonded interface between two elastic media is proposed. Displacement across this surface is not required to be continuous. The displacement discontinuity, or slip, is taken to be linearly related to the stress traction which is continuous across the interface. For isotropic interface behavior, there are two complex frequency dependent interface compliances, ηN and ηT, where the component of the slip normal to the interface is given by ηN times the normal stress and the component tangential to the interface is given by ηT times the shear stress and is in the same direction. Reflection and transmission coefficients for harmonic plane waves incident at arbitrary angles upon a plane linear slip interface are computed in terms of the interface compliances. These coefficients are frequency dependent even when the compliances are real and frequency independent. Examples of the effects of buried slip interfaces on reflection coefficient spectra and on Love-wave dispersion relations are presented.

Hsu C J, Schoenberg M.

Elastic waves through a simulated fractured medium

[J]. Geophysics, 1993, 58(7):964-977.

DOI:10.1190/1.1443487      URL     [本文引用: 1]

Ultrasonic velocities were measured on a block composed of lucite plates with roughened surfaces pressed together with a static normal stress to simulate a fractured medium. The measurements, normal, parallel, and oblique to the fractures, show that for wavelengths much larger than the thickness of an individual plate, the block can be modeled as a particular type of transversely isotropic (TI) medium that depends on four parameters. This TI medium behavior is the same as that of an isotropic solid in which are embedded a set of parallel linear slip interfaces, specified by (1) the excess compliance tangential to the interfaces and (2) the excess compliance normal to the interfaces. At all static stress levels, we inverted the data for the background isotropic medium parameters and the excess compliances. The background parameters obtained were basically independent of stress level and agreed well with the bulk properties of the lucite. The excess compliances decreased with increasing static closing stress, implying that increasing static stress forces asperities on either side of a fracture into greater contact, gradually eliminating the excess compliance that gives rise to the anisotropy. A medium with such planes of excess compliance has been shown, theoretically, to describe the behavior of a medium with long parallel joints, as well as a medium with embedded parallel microcracks.

Schoenberg M, Douma J.

Elastic wave propagation in media with parallel fractures and aligned cracks1

[J]. Geophysical Prospecting, 1988, 36(6):571-590.

DOI:10.1111/gpr.1988.36.issue-6      URL     [本文引用: 1]

Teng L. Seismic and rock-physics characterization of fractured reservoirs[D]. USA: Stanford University,1998.

[本文引用: 1]

Bakulin A, Grechka V, Tsvankin I.

Estimation of fracture parameters from reflection seismic data—Part I:HTI model due to a single fracture set

[J]. Geophysics, 2000, 65(6):1788-1802.

DOI:10.1190/1.1444863      URL     [本文引用: 2]

The simplest effective model of a formation containing a single fracture system is transversely isotropic with a horizontal symmetry axis (HTI). Reflection seismic signatures in HTI media, such as NMO velocity and amplitude variation with offset (AVO) gradient, can be conveniently described by the Thomsen‐type anisotropic parameters [Formula: see text] [Formula: see text] and [Formula: see text] Here, we use the linear slip theory of Schoenberg and co‐workers and the models developed by Hudson and Thomsen for pennyshaped cracks to relate the anisotropic parameters to the physical properties of the fracture network and to devise fracture characterization procedures based on surface seismic measurements. Concise expressions for [Formula: see text] [Formula: see text] and [Formula: see text] linearized in the crack density, show a substantial difference between the values of the anisotropic parameters for isolated fluid‐filled and dry (gas‐filled) penny‐sh aped cracks. While the dry‐crack model is close to elliptical with [Formula: see text] for thin fluid‐filled cracks [Formula: see text] and the absolute value of [Formula: see text] for typical [Formula: see text] ratios in the background is close to the crack density. The parameters [Formula: see text] and [Formula: see text] for models with partial saturation or hydraulically connected cracks and pores always lie between the values for dry and isolated fluid‐filled cracks. We also demonstrate that all possible pairs of [Formula: see text] and [Formula: see text] occupy a relatively narrow triangular area in the [Formula: see text] [Formula: see text]plane, which can be used to identify the fracture‐induced HTI model from seismic data. The parameter [Formula: see text] along with the fracture orientation, can be obtained from the P-wave NMO ellipse for a horizontal reflector. Given [Formula: see text] the NMO velocity of a dipping event or nonhyperbolic moveout can be inverted for [Formula: see text] The remaining anisotropic coefficient, [Formula: see text] can be determined from the constraint on the parameters of vertically fractured HTI media if an estimate of the [Formula: see text] ratio is available. Alternatively, it is possible to find [Formula: see text] by combining the NMO ellipse for horizontal events with the azimuthal variation of the P-wave AVO gradient. Also, we present a concise approximation for the AVO gradient of converted (PS) modes and show that all three relevant anisotropic coefficients of HTI media can be determined by the joint inversion of the AVO gradients or NMO velocities of P- and PS-waves. For purposes of evaluating the properties of the fractures, it is convenient to recalculate the anisotropic coefficients into the normal [Formula: see text] and tangential [Formula: see text] weaknesses of the fracture system. If the HTI model results from penny‐shaped cracks, [Formula: see text] gives a direct estimate of the crack density and the ratio [Formula: see text] is a sensitive indicator of fluid saturation. However, while there is a substantial difference between the values of [Formula: see text] for isolated fluid‐filled cracks and dry cracks, interpretation of intermediate values of [Formula: see text] for porous rocks requires accounting for the hydraulic interaction between cracks and pores.

梁志强.

面向AVAZ反演的解释性处理技术在裂缝预测中的应用

[J]. 地球物理学进展, 2022, 37(5):1977-1984.

[本文引用: 1]

Liang Z Q.

Application of interpretive processing techniques for AVAZ inversion in fracture prediction

[J]. Progress in Geophysics, 2022, 37(5):1977-1984.

[本文引用: 1]

舒梦珵.

改进的AVAZ方法在裂缝型储层预测中的应用研究

[J]. CT 理论与应用研究, 2017, 26(1):45-52.

[本文引用: 1]

Shu M C.

The application of improved AVAZ method in predicting the fractured reservoir

[J]. CT Theory and Applications, 2017, 26(1):45-52.

[本文引用: 1]

Ikelle L T.

19 amplitude variations with azimuths(AVAZ) inversion based on linearized inversion of common azimuthal sections

[M]//Seismic Anisotropy. Society of Exploration Geophysicists, 1996:601-644.

[本文引用: 1]

Sayers C M, Dean S.

Azimuth-dependent AVO in reservoirs containing non-orthogonal fracture sets

[J]. Geophysical Prospecting, 2001, 49(1):100-106.

DOI:10.1046/j.1365-2478.2001.00236.x      URL     [本文引用: 1]

Azimuthal anisotropy in rocks can result from the presence of one or more sets of partially aligned fractures with orientations determined by the stress history of the rock. The symmetry of a rock with horizontal bedding that contains two or more non‐orthogonal sets of vertical fractures may be approximated as monoclinic with a horizontal plane of mirror symmetry. For offsets that are small compared with the depth of the reflector, the azimuthal variation in P‐wave AVO gradient for such a medium varies with azimuth as where φ is the azimuth measured with respect to the fast polarization direction for a vertically polarized shear wave. φ2 depends on both the normal compliance BN and the shear compliance BT of the fractures and may differ from zero if BNBT varies significantly between fracture sets. If BNBT is the same for all fractures, \n\n and the principal axes of the azimuthal variation in P‐wave AVO for fixed offset are determined by the polarization directions of a vertically propagating shear wave. At larger offsets, terms in \n\n and \n\n are required to describe the azimuthal variation in AVO accurately. φ4 and φ6 also depend on BNBT. For gas‐filled open fractures \n\n but a lower value of BNBT may result from the presence of a fluid with non‐zero bulk modulus.

肖鹏飞, 王世星, 曲寿利, .

倾角对裂缝密度反演的影响分析

[J]. 石油物探, 2009, 48(6):544-551.

[本文引用: 1]

在倾斜裂缝中,能不能利用普遍使用的裂缝发育强度近似公式进行裂缝密度评价,是一个值得讨论的问题。由TTI介质反射振幅方程出发,推导出与HTI介质裂缝密度计算公式相似的TTI介质的裂缝密度计算公式;通过对两个公式的对比分析,建立了裂缝倾角影响裂缝密度计算结果的理论基础;通过数值计算,绘制了裂缝密度与裂缝倾角的关系曲线,对裂缝倾角的影响程度进行了量化分析,得出在设计的代表性模型中,当裂缝倾角小于80°时,利用简化公式评价裂缝密度,将使结果产生较大偏差的结论。依据塔河油田裂缝型储层设计了TTI介质和HTI介质模型,正演模拟结果验证了上述结论的正确性,同时还发现裂缝倾角对裂缝密度评价的影响甚至大于数据噪声引起的误差。基于此,提出对于倾斜裂缝介质,不能直接利用简化公式计算裂缝密度的建议。

Xiao P F, Wang S X, Qu S L, et al.

Analysis on the impact of dip on fracture density inversion

[J]. Geophysical Prospecting for Petroleum, 2009, 48(6):544-551.

[本文引用: 1]

<FONT face=Verdana>Can we use common fracture growth intensity approximate formula for fracture density evaluation in dip fracture? It is worth for discussion.Starting from reflecting amplitude equation of TTI medium,the fracture density formula of TTI medium was gained,which is similar with that of HTI medium.Through comparison on the two formulas,the basic theory for fracture density calculations varying with its dip was built.Then,by numerical calculation,the relationship curve of fracture density and dip was plotted,and the impact of fracture dip was quantitatively analyzed.The results indicate that in the representative designed model,when fracture dip is smaller than 80°,large deviation will be obtained by evaluating fracture density through simplified approximate formula.The forward modeling results of TTI and HTI medium models designed in terms of fractured reservoirs of Tahe Oilfield prove the above conclusions.Meanwhile,it is found that the impact of fracture dip on its density evaluation is even larger than the error caused by data noise.So,we suggest that it couldnt directly use the simplified formula for fracture density calculation in dip fractured medium.</FONT>

张雪莹, 孙鹏远, 马学军, .

正交各向异性介质反射系数精确解

[J]. 石油地球物理勘探, 2020, 55(5):1060-1072.

[本文引用: 1]

Zhang X Y, Sun P Y, Ma X J, et al.

Exact solution of reflection coefficient of orthotropic media

[J]. Oil Geophysical Prospecting, 2020, 55(5):1060-1072.

[本文引用: 1]

/

京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com