E-mail Alert Rss
 

物探与化探, 2024, 48(1): 1-14 doi: 10.11720/wtyht.2024.2503

地质调查·资源勘查

冀西北宣化盆地髫髻山组粗面岩年代学、地球化学特征及其地质意义

杨济远,1, 胡新茁,2, 周敬1, 齐朋超3, 李泽阳1, 孟家葆1, 许凡1, 张会彬1, 齐慧云1

1.河北省区域地质调查院(河北省地学旅游研究中心),河北 廊坊 065000

2.中国地质调查局 廊坊自然资源综合调查中心,河北 廊坊 065000

3.河北省地矿局第六地质大队,河北 石家庄 050000

Chronology and geochemical characteristics of trachytes in the Tiaojishan Formation, Xuanhua Basin, northwestern Hebei Province, and their geological implications

YANG Ji-Yuan,1, HU Xin-Zhuo,2, ZHOU Jing1, QI Peng-Chao3, LI Ze-Yang1, MENG Jia-Bao1, XU Fan1, ZHANG Hui-Bin1, QI Hui-Yun1

1. Hebei Institute of Regional Geological Survey(Geotourism Research Center of Hebei Province), Langfang 065000, China

2. Langfang Natural Resources Comprehensive Survey Center, China Geological Survey, Langfang 065000, China

3. No. 6 Geological Team of Hebei Bureau of Geology and Mineral Resources Exploration, Shijiazhuang 050000, China

通讯作者: 胡新茁(1989-),女,2016年毕业于中国地质大学(北京),硕士研究生,工程师,构造地质学专业,研究方向:矿产地质调查与项目管理。Email:1261392324@qq.com

责任编辑: 蒋实

收稿日期: 2022-10-8   修回日期: 2023-03-31  

基金资助: 河北省自然资源厅部署项目“河北省沙岭子、宣化县、深井镇、涿鹿县1∶5万区域地质调查”(4540401JBND1G1)

Received: 2022-10-8   Revised: 2023-03-31  

作者简介 About authors

杨济远(1990-),男,2014年毕业于石家庄经济学院,工程师,资源勘查工程专业,主要从事区域地质与矿产地质调查研究工作。Email:705748681@qq.com

摘要

冀西北髫髻山组火山—沉积地层发育,但生物化石匮乏,前人同位素测年资料不足且测年方法陈旧,致使其形成时代一直存在争议。为了准确确定该组地层的形成时代,研究其形成的区域大地构造背景,笔者对宣化盆地髫髻山组的岩性组合开展了详细的野外调查,对地层上部粗面质火山岩开展了岩石学、岩石地球化学及高精度同位素测年研究,获得了161.1±1.2 Ma和162.5±1.3 Ma的LA-ICP-MS锆石U-Pb同位素年龄;岩石学、岩石地球化学特征表明,上部粗面质火山岩为钾玄岩系列,岩石具有轻稀土元素富集,Rb、K、Th、Ce、Zr、Hf等元素相对富集,Ba、Nb、Sr、P、Ti相对亏损的特征;通过主要参数对比和图解判别,确定岩浆主要源于大陆地壳物质熔融,粗面质火山岩形成于挤压大陆边缘火山弧构造背景。综合研究认为,髫髻山组主要形成于中侏罗世,并延续至晚侏罗世,其上部粗面质火山岩形成于板内挤压构造背景,该成果对中生代火山岩—沉积地层划分对比及形成环境研究补充了新资料。

关键词: 宣化盆地; 髫髻山组; 粗面岩; 岩石地球化学特征; 锆石U-Pb

Abstract

The Tiaojishan Formation in northwestern Hebei Province is home to volcanic-sedimentary strata. Due to the lack of fossil organisms, insufficient isotopic dating data, and outdated dating methods, the formation epochs of these strata have been controversial. To accurately determine their formation epochs and examine their regional geotectonic setting, this study conducted a detailed field investigation of the lithologic assemblage of the Tiaojishan Formation in the Xuanhua Basin. Petrological, petrogeochemical, and high-precision isotopic dating studies were conducted on the trachytic volcanic rocks in the upper segment of the formation, obtaining the LA-ICP-MS-based zircon U-Pb isotopic ages, which were 161.1±1.2 Ma and 162.5±1.3Ma. As indicated by the petrological and petrogeochemical characteristics, these trachytic volcanic rocks belong to the shoshonite series, exhibiting enriched light rare earth elements, relatively enriched elements including Rb, K, Th, Ce, Zr, and Hf, and relatively depleted Ba, Nb, Sr, P, and Ti. According to the comparison of principal parameters and graphical discrimination, the magma originated primarily from the melting of continental crustal materials and formed in the tectonic setting of compressional continental margin volcanic arcs. The comprehensive research reveals that the Tiaojishan Formation formed primarily during the Middle Jurassic and continued to the Late Jurassic, and the trachytic volcanic rocks in its upper segment formed in the intraplate compressional tectonic setting. The results of this study provide new data for the division and correlation of Mesozoic volcanic-sedimentary strata and the analysis of their formation environment.

Keywords: Xuanhua Basin; Tiaojishan Formation; trachyte; petrogeochemical characteristics; zircon U-Pb

PDF (8237KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

杨济远, 胡新茁, 周敬, 齐朋超, 李泽阳, 孟家葆, 许凡, 张会彬, 齐慧云. 冀西北宣化盆地髫髻山组粗面岩年代学、地球化学特征及其地质意义[J]. 物探与化探, 2024, 48(1): 1-14 doi:10.11720/wtyht.2024.2503

YANG Ji-Yuan, HU Xin-Zhuo, ZHOU Jing, QI Peng-Chao, LI Ze-Yang, MENG Jia-Bao, XU Fan, ZHANG Hui-Bin, QI Hui-Yun. Chronology and geochemical characteristics of trachytes in the Tiaojishan Formation, Xuanhua Basin, northwestern Hebei Province, and their geological implications[J]. Geophysical and Geochemical Exploration, 2024, 48(1): 1-14 doi:10.11720/wtyht.2024.2503

0 引言

冀西北宣化盆地位于华北克拉通北缘中段,自显生宙以来该区构造活动频繁,分为早奥陶世到晚志留世古亚洲洋的俯冲削减和弧—陆碰撞阶段、早石炭世—早二叠世活动大陆边缘演化阶段、二叠纪末期至三叠纪微陆块碰撞合并阶段及侏罗纪—白垩纪的克拉通破坏4个阶段[1-4]。中生代时期,由于古亚洲洋的闭合和太平洋的俯冲,中国东部近EW向的构造域向NNE向转换,并在燕山期达到顶峰[5]。为此,中国地质学的先驱者之一翁文灏学者最早提出了燕山运动,指发生在华北燕山地区中晚侏罗世的重大构造事件,并将其划分为“绪动/A幕”、中间幕和侏罗纪末期的B幕3个阶段[6-7]。关于燕山运动的性质,大多数学者认为燕山运动是中国东部近EW向的特提斯构造域向NNE向的滨太平洋构造域的转换,是从大陆碰撞构造体制转为以西太平洋陆缘俯冲构造体制为主导的陆内变形和陆内造山[8-14]。基于更好地解释、研究华北燕山运动,近年来,众多地质学者对冀北一带出露的中生代火山岩进行了较为系统的研究[15-23],以期根据岩浆作用更好地解释中国东部中生代构造格架的转换。

在冀北地区,共发育4个重要的中生代火山岩地层,分别为南大岭组、髫髻山组(蓝旗)、张家口组和义县组。其中,髫髻山组火山岩研究表明,其总体为一套以粗安质、安山质熔岩、角砾凝灰岩等火山喷出岩为主,夹有凝灰质砂岩等的火山—沉积地层。通过1∶5万沙岭子幅区域地质调查,笔者在冀西北宣化盆地内髫髻山组上部新填绘出一套粗面岩及粗面质火山碎屑岩,为了进一步探讨华北燕山地区中生代火山岩的成因和构造背景,本文结合前人的研究成果对该套粗面岩进行岩石学、地球化学及年代学的系统研究,以期为该区域的岩浆起源及构造演化提供依据。

1 区域地质背景

研究区位于华北克拉通北缘中段(图1a),燕山山脉与大兴安岭—太行山脉交汇部位,北部与兴蒙造山带相邻。晚古生代—中生代期间,研究区处于不同板块间的构造复合部位[24-27],经历了多期次复杂的构造运动,构造—岩浆活动剧烈,褶皱、断裂和逆冲推覆构造十分发育,构造线以EW向和NE向为主,近SN向次之[28-30]

图1

图1   宣化盆地一带区域构造(a)(据甄世民等[31]修编)及地质简图(b)(据白春东等[32]修编)

1—第四系;2—张家口组;3—土城子组;4—髫髻山组二段;5—髫髻山组一段;6—九龙山组;7—雾迷山组;8—高于庄组;9—花岗斑岩;10—角度不整合接触界线;11—正断层及倾角;12—性质不明断层;13—飞来峰构造;14—地层产状;15—火山口;16—取样位置

Fig.1   Sketch map of the regional structure (a) (simplified according to Zhen S M, et al. [31])and geological sketch (b) of the Xuanhua Basin (simplified according to Bai C D,et al[32])

1—Quaternary;2—Zhangjiakou Formation;3—Tuchengzi Formation;4—the second section of Tiaojishan Formation;5—the first section of Tiaojishan Formation;6—Jiulongshan Formation;7—Wumishan Formation;8—Gaoyuzhuang Formation;9—granite porphyry;10—angle unconformity contact boundary;11—normal fault and dip;12—fault of unknown nature;13—Feilaifeng structure;14—formation occurrrence;15—volcanic crater;16—sampling position


宣化盆地内出露中生界地层自下而上分别为下花园组、九龙山组、髫髻山组、土城子组和张家口组(见图1b)。其中髫髻山组总体为一套中性、中碱性火山岩夹凝灰质砂岩、岩屑砂岩,整合于九龙山组之上,与上覆土城子组为整合接触关系。笔者在1∶5万沙岭子幅地质填图时,根据其火山喷发规律和岩石组合将其划分为两个岩性段:一段分布较广泛,为一套粗安岩及粗安质火山碎屑岩组合,主要岩性为灰绿色粗安质沉集块角砾岩、浅灰绿色粗安质沉角砾凝灰岩、灰绿色粗安质角砾凝灰岩、灰绿色粗安质集块岩、灰绿色粗安质角砾岩、灰褐色—紫红色—灰红色粗安岩,灰绿色蚀变粗安岩、褐灰色玄武粗安岩、浅灰色安山岩、浅灰色安山质角砾岩,局部发育黄灰色、灰褐色凝灰质砂岩、岩屑砂岩夹层,厚度大于391.3 m;二段分布于宣化盆地滴水崖村及雷公山一带,为一套粗面岩及粗面质角砾岩组合,主要岩性为灰黄色—灰褐色—紫红色粗面岩、紫红色粗面质集块角砾岩、黄灰色—紫红色粗面质角砾岩、紫灰色—灰白色—灰红色粗面质凝灰岩,局部发育灰褐色气孔状辉石粗面岩、灰红色凝灰质砂岩夹层,厚608.2 m。

2 岩石学特征

本次研究分别对滴水崖村、党家沟村及雷公山一带发育的髫髻山组上部粗面岩进行了系统采样分析。野外采样时,选择原位、新鲜、无风化、无蚀变的岩石样品,采样地点详细记录坐标及高程,并对岩石宏观特征进行拍照记录(图2a~d),最后用无污染的白布袋将采集好的样品装好,并用规范的编号标明样品。

图2

图2   宣化盆地髫髻山组粗面岩野外露头(a~d)和显微照片(e~f)(Kfs:钾长石)

Fig.2   Field outcrops(a~d) and photomicrographs(e~f) of trachytes in the Tiaojishan Formation, Xuanhua Basin (Kfs: potassium feldspar)


由显微照片可知,图2e所示粗面岩为斑状结构—基质粗面结构,块状构造,由斑晶、基质组成。其中斑晶由钾长石、暗色矿物组成,粒度一般为0.2~3.1 mm,杂乱分布,钾长石呈半自形板状,普遍具黑云母—绿泥石化、碳酸盐化,部分暗色矿物具皂石化、少硅化,裂纹被铁质填充推测呈辉石假象,部分暗色矿物为黄褐色半自形柱状角闪石;基质由钾长石、暗色矿物假象、不透明矿物组成,粒度一般<0.15 mm,杂乱分布,钾长石多呈半自形短板状,具黑云母—绿泥石化,暗色矿物具绿泥石化假象,不透明矿物多呈黑色微粒状,杏仁体多呈圆形,大小0.6~2.6 mm,零散分布,由少量绿鳞石、黏土等填充。

图2f所示粗面岩为斑状结构—基质粗面结构,块状构造,由斑晶、基质组成。其中斑晶由钾长石、暗色矿物组成,粒度一般为0.2~3.65 mm,杂乱分布,钾长石呈半自形板状,普遍具黏土化、轻微碳酸盐化,暗色矿物具碳酸盐化等,裂纹被铁质填充呈假象;基质由钾长石、暗色矿物假象、不透明矿物组成,粒度一般<0.2 mm,杂乱分布,钾长石多呈自形—半自形短板状,部分具土化,暗色矿物具黑云母—绿泥石化、碳酸盐化假象,不透明矿物多呈黑色微粒状。岩内见少量碳酸盐、铁质、硅质等填充裂隙。

3 样品及分析方法

3.1 样品采集

本文研究工作针对滴水崖村一带出露的粗面岩(D2022、D3511),进行了LA-ICP-MS锆石U-Pb测年,测试结果见表1表2。并与党家沟村附近(D4021、D4022)和雷公山一带(PM17)出露的粗面岩一起进行了主量、微量元素测试分析,分析结果见表3。具体采样位置见图1,采样坐标分别为:N40°30'39″、E114°52'56″(D2022);N40°32'13″、E114°54'39″(D3511);N40°20'46″、E114°52'55″(D4021);N40°29'35″、E114°52'58″(D4022)和N40°27'25″、E115°00'16″(PM17)。

表1   粗面岩(D2022)锆石LA-ICP-MS年代学分析结果

Table 1  Chronological analysis results of trachyte (D2022) zircon by LA-ICP-MS

样品号含量/10-6同位素比值年龄/Ma
Pb232Th238UTh/U207Pb/
235U
2σ206Pb/
238U
2σ207Pb/
206Pb
2σ208Pb/
232Th
2σ206Pb/
238U
2σ207Pb/
235U
2σ208Pb/
232Th
2σ
D2022-13.062.594.00.660.1770.0210.02510.00070.05150.0060.00810.0007159.74.5162.018.0162.014.0
D2022-22.666.177.40.850.1810.0280.02530.00080.05300.0090.00860.0007161.05.3162.024.0174.014.0
D2022-3*6.057.282.90.691.4900.1900.03050.00140.32300.0340.03990.0043193.68.5829.073.0784.082.0
D2022-42.346.074.50.620.1790.0290.02540.00110.05040.0080.00790.0010161.96.8160.025.0160.021.0
D2022-53.263.3100.80.630.1640.0210.02510.00070.04780.0060.00860.0007159.74.6149.018.0173.013.0
D2022-62.858.385.70.680.1650.0210.02530.00070.04850.0060.00830.0007161.34.7149.019.0167.013.0
D2022-72.858.784.60.690.1780.0240.02540.00080.05130.0070.00850.0007161.84.7161.021.0170.013.0
D2022-82.748.888.60.550.1660.0190.02510.00080.04770.0060.00830.0009159.74.7151.017.0166.018.0
D2022-92.136.367.60.540.1620.0250.02550.00080.04580.0070.00930.0009162.05.1145.022.0187.017.0
D2022-102.645.881.00.560.1750.0210.02530.00070.05310.0070.00890.0008161.04.4158.018.0180.015.0
D2022-112.957.382.90.690.2010.0370.02530.00090.06100.0110.00930.0013161.15.4176.031.0187.027.0
D2022-122.446.680.60.580.1750.0330.02510.00090.04980.0090.00840.0010160.05.7157.028.0169.020.0
D2022-132.439.973.20.550.1630.0350.02500.00100.05000.0100.00970.0013159.36.5148.031.0194.027.0
D2022-142.139.864.90.610.1750.0260.02510.00080.05000.0080.00800.0008159.74.9154.022.0162.017.0
D2022-151.630.253.40.570.1690.0400.02570.00120.05000.0120.00800.0012163.67.5154.036.0161.023.0
D2022-162.956.683.50.680.1910.0250.02560.00090.05520.0070.00880.0009163.05.8174.022.0177.018.0
D2022-173.388.892.90.960.2010.0460.02610.00140.05700.0140.00840.0013166.08.7181.039.0169.026.0
D2022-181.730.152.80.570.1660.0350.02540.00110.04800.0100.00910.0013161.36.9148.030.0182.026.0
D2022-191.932.859.80.550.1800.0320.02500.00100.05400.0100.00840.0013159.26.6160.027.0169.026.0
D2022-202.039.162.40.630.1740.0250.02570.00090.05020.0080.00880.0010163.75.6158.022.0176.020.0

注:有*号的样品数据为计算加权值时剔除的数据;下同。

新窗口打开| 下载CSV


表2   粗面岩(D3511)锆石LA-ICP-MS年代学分析结果

Table 2  Chronological analysis results of trachyte (D3511) zircon by LA-ICP-MS

样品号含量/10-6同位素比值年龄/Ma
Pb232Th238UTh/U207Pb/
235U
2σ206Pb/
238U
2σ207Pb/
206Pb
2σ208Pb/
232Th
2σ206Pb/
238U
2σ207Pb/
235U
2σ208Pb/
232Th
2σ
D3511-1*7.7151.8187.00.810.240.0350.03260.00080.050.00750.01120.0010206.94.8217.029.0226.021.0
D3511-264.92168.01695.01.280.180.0070.02560.00050.050.00160.00800.0002162.82.8167.05.7161.33.4
D3511-3*29.8509.0455.01.120.330.0160.04520.00080.050.00260.01420.0004285.14.8285.012.0285.87.3
D3511-4*105.9100.7462.00.222.070.0720.18690.00370.080.00280.06290.00331104.020.01136.024.01232.062.0
D3511-5*15.6117.4206.10.570.460.0440.05930.00130.060.00550.01860.0013371.57.9378.031.0372.025.0
D3511-6*19.1331.2498.00.670.210.0170.02820.00080.050.00490.00870.0006179.14.9193.014.0174.012.0
D3511-7*15.7207.2241.00.860.340.0260.04590.00100.050.00410.01490.0007289.26.1292.020.0299.014.0
D3511-8*13.2250.8190.61.320.350.0330.04580.00130.060.00540.01380.0008288.68.0299.025.0277.016.0
D3511-9*34.1490.0486.01.010.370.0160.04940.00090.050.00240.01530.0004311.05.2315.012.0307.37.7
D3511-1022.4600.0647.00.930.180.0070.02550.00040.050.00210.00830.0002162.42.4165.86.3166.74.4
D3511-1116.6351.7503.40.700.180.0100.02550.00050.050.00290.00780.0003162.22.9166.78.9157.56.5
D3511-12*29.2502.0441.01.140.350.0330.04470.00130.060.00480.01410.0007281.77.9303.024.0282.013.0
D3511-139.0221.6265.00.840.180.0120.02570.00050.050.00320.00820.0003163.53.1164.010.0165.56.4
D3511-14*198.1109.7304.00.3611.800.1900.49270.00730.170.00220.13740.00282581.032.02586.015.02601.050.0
D3511-153.590.196.10.940.190.0270.02530.00080.050.00740.00860.0006161.14.7168.023.0174.013.0
D3511-16*39.3493.0591.00.830.350.0350.04730.00120.050.00560.01550.0008297.67.2303.026.0310.016.0
D3511-1745.6699.0596.01.170.650.0280.04880.00090.100.00460.01920.0005307.25.7500.017.0384.010.0
D3511-18*234.3342.3311.51.1011.590.1900.48400.00740.170.00280.13350.00222543.032.02573.015.02532.040.0

新窗口打开| 下载CSV


表3   髫髻山组粗面岩主量元素(%)、微量元素和稀土元素(10-6)分析结果

Table 3  Analysis results of major elements (%), trace elements and rare earth elements (10-6) of trachytes in the Tiaojishan Formation

样品号PM17-38-1PM17-41-1PM17-44-1D2022D3511D4021-1D4021-2D4022-1
SiO264.6065.6263.3568.9663.1862.7261.1963.96
TiO20.900.970.990.340.991.041.020.96
Al2O313.7614.5214.6415.4614.5515.3415.2414.47
Fe2O35.834.426.661.435.406.508.637.72
FeO0.330.551.140.490.630.180.180.12
MnO0.1370.0760.120.0400.1300.0420.0660.043
MgO0.450.500.550.871.340.390.510.32
CaO2.261.550.902.351.571.071.201.11
Na2O4.004.374.393.454.314.183.793.20
K2O5.455.755.814.345.636.105.865.74
P2O50.2820.3120.320.1490.3300.3370.3240.306
灼失量1.871.190.891.831.772.001.881.97
Total99.9199.8999.8899.7699.9099.8999.8999.91
A/NK1.101.081.081.491.101.141.211.26
A/CNK0.870.941.021.080.951.051.091.13
La51.9055.5053.7043.2052.7045.4054.0053.20
Ce96.10105.00108.0074.3099.6093.70109.00112.00
Pr12.9013.5013.607.8612.7012.0013.3013.60
Nd49.7051.5052.4027.5049.4047.4051.7053.00
Sm9.579.169.034.049.149.179.349.80
Eu2.742.842.811.302.683.413.092.95
Gd8.577.868.163.477.838.338.298.73
Tb1.371.261.300.481.301.401.381.47
Dy7.967.077.092.307.696.847.097.74
Ho1.501.341.400.441.461.241.351.51
Er4.053.654.071.394.153.433.874.34
Tm0.600.540.680.220.650.490.580.68
Yb3.663.174.181.603.982.853.574.20
Lu0.570.480.630.260.640.420.530.61
Y38.7034.5037.8013.2038.6031.8033.9041.10
Rb101.00106.00108.00101.0090.1092.90101.00103.00
Ba356.00386.00370.001255.00340.00377.00312.00267.00
Th7.998.217.847.847.458.249.058.80
U1.621.691.621.231.881.531.511.71
Nb19.7021.0020.9013.8019.8018.9019.8019.90
Sr36.9031.0032.20433.0054.8074.4038.8046.60
Zr325.00358.00375.00147.00336.00369.00379.00385.00
Hf8.448.698.864.058.259.279.269.02
Ga23.0024.7024.5016.0024.0023.8024.5024.60
Ta1.121.131.351.001.091.211.211.14
V12.007.026.6228.405.1251.8024.4035.50
Co2.111.091.253.262.381.841.290.91
Ni3.331.972.872.463.021.130.981.26
∑REE251.16262.49267.08168.47253.92236.10267.00273.96
LREE222.90237.13239.57158.30226.2221110.00240.34244.68
HREE28.2725.3627.5210.1627.6925.0026.6529.29
LREE/
HREE
7.899.358.7115.578.178.459.028.35
La/Yb10.1912.549.2219.349.5111.4610.879.08
δEu0.921.021.001.060.971.191.070.97
δCe0.910.940.980.990.940.990.991.02

新窗口打开| 下载CSV


3.2 分析方法

标准的重矿物分离方法挑出U-Pb同位素测年锆石,由河北省区域地质矿产调查研究所实验室加工完成。按照常规粉碎淘洗,经磁选和重液分离,然后在双目镜下人工挑选出纯度在99%以上的锆石。锆石制靶、反射光、阴极发光图像分析及LA-ICP-MS测年由北京锆年领航科技有限公司完成。仪器详细参数及操作方法参考文献[33];数据处理应用Iolite程序[34],锆石91500作为校正标样,GJ-1作为监测标样,每隔10~12个样品点分析2个91500标样及一个GJ-1标样。通常采集20 s的气体空白,35~40 s的信号区间进行数据处理,按指数方程进行深度分馏校正[34],年龄计算及谐和图的绘制采用Isoplot3.0程序[35]

岩石地球化学分析均由河北省区域地质矿产调查研究所实验室完成,样品的加工过程均在无污染设备中进行。主量元素采用碱溶法制备样品,并使用AxiosmaxX射线荧光光谱仪完成分析测试,烧失量、H2O+和H2O-采用P1245电子分析天平完成测试,分析误差优于5%。微量元素和稀土元素采用酸溶法制备样品,使用电感耦合等离子体质谱仪(ICP-MS)(XSerise2)完成测试,相对误差不大于5%,测试方法见高剑峰等[36]

4 分析结果

4.1 锆石U-Pb定年

本次粗面岩挑选出的锆石形态多呈透明—半透明短柱状或长柱状,自形程度较好,粒径较小,多为10~100 μm,长宽比主要介于1.2∶1~2∶1,阴极发光图像上具清晰的振荡环带(图3)。锆石的Th、U含量变化较大(表12),Th含量为(30.1~2 168.0)×10-6,U含量为(52.8~1 695.0)×10-6w(Th)/w(U)比值介于0.54~1.28,均值为0.89,均大于0.4,结合锆石CL图像特征来看,髫髻山组粗面岩样品中的锆石为岩浆成因锆石[37]

图3

图3   宣化盆地髫髻山组粗面岩锆石阴极发光图像

Fig.3   Zircon cathodoluminescence images of trachytes in the Tiaojishan Formation, Xuanhua Basin


D2022粗面岩测定锆石20颗,19颗锆石具谐和年龄,w(206Pb)/w(238U)年龄变化范围为159~166 Ma,加权平均值为161.1±1.2 Ma(n=19,MSWD=0.51);D3511粗面岩中有较多的捕获锆石,测定锆石18颗,其中5颗锆石具谐和年龄,w(206Pb)/w(238U)加权平均值为162.5±1.3 Ma(n=5,MSWD=0.22)。以上两个年龄均表明岩石形成于中侏罗世晚期—晚侏罗世早期(图34)。

图4

图4   宣化盆地髫髻山组粗面岩U-Pb年龄谐和图与加权平均年龄

Fig.4   Consonance map and weighted average age of U-Pb ages of trachytes in the Tiaojishan Formation, Xuanhua Basin

a—D2022;b—D3511


4.2 全岩地球化学

粗面岩的主量元素分析结果见表3。粗面岩样品的SiO2含量为61.19%~68.96%,平均64.20%;Al2O3含量介于13.76%~15.46%,平均14.75%;w(K2O)/w(Na2O)比值为1.26~1.79,平均1.42;K2O+Na2O含量较高,为7.80%~10.28%,CaO含量介于0.90%~2.35%,平均1.50%;TiO2含量介于0.34%~1.04%;MgO含量介于0.39%~1.34%,平均0.62%。据邓晋福等[38]关于TAS图解的相关建议投图,除D2022点落入粗面岩与英安岩交界附近外,其余均落入粗面岩区域内(图5a)。在w(K2O)—w(SiO2)图解中,除D2022点落入高钾钙碱性系列外,其余均落入钾玄岩区域(图5b)。

图5

图5   宣化盆地髫髻山组粗面岩TAS图解(a)[39]w(K2O)-w(SiO2)图解(b)[40-41]

1—苦橄玄武岩;2—玄武岩;3—玄武安山岩;4—安山岩;5—英安岩;6—流纹岩;7—粗面玄武岩;8—玄武质粗面安山岩;9—粗面安山岩;10—粗面岩、粗面英安岩;11—响岩;12—碱玄质响岩;13—响岩质碱玄岩;14—碱玄岩、碧玄岩;15—副长石岩

Fig.5   TAS diagram (a) [39] and w(K2O)-w(SiO2) diagram (b)[40-41]of trachytes in the Tiaojishan Formation, Xuanhua Basin

1—picrite basalt;2—basalt;3—basaltic andesite;4—andesite;5—dacite;6—rhyolite; 7—trachybasalt;8—basaltic trachyandesite;9—trachyandesite;10—trachyte,trachyte dacite; 11—phonolite;12—alkalinite phonolite;13—phonolitic alkali basalt;14—alkali basalt, basalt; 15—subfeldspar rock


粗面岩的稀土与微量元素分析结果见表3。其中,稀土元素总量∑REE集中在(168.47~273.96)×10-6,平均247.52×10-6,在球粒陨石标准化稀土元素配分模式图中呈右倾配分模式(图6a),w(LREE)/w(HREE)=7.89~15.67,平均9.44;[w(La)/w(Yb)]N=9.08~19.34,平均11.52。总体显示岩石具轻稀土富集、重稀土亏损的分馏特征,未出现明显Eu异常或具有轻微Eu的正异常(δEu=0.92~1.19,平均1.03),这可能与岩浆中斜长石结晶分异较弱有关。在原始地幔标准化微量元素蛛网图中,粗面岩表现出相对富集Rb、K、Th、Ce、Zr、Hf等元素,相对亏损Ba、Nb、Sr、P、Ti等元素(图6b);w(Sr)/w(Y)比值除D2022外,均较低(0.85~2.34,平均1.25),w(Zr)/w(Hf)比值介于36.35~40.97,平均40.32。

图6

图6   宣化盆地髫髻山组粗面岩球粒陨石标准化稀土元素配分图(a)和原始地幔标准化微量元素蛛网图(b)(球粒陨石标准化值据Boynton[42],原始地幔标准化值据Sun and McDonough[43])

Fig.6   Chondrite-normalized rare earth element distribution map (a) and spider diagram of primitive mantle normalized trace elements (b) of trachytes in the Tiaojishan Formation, Xuanhua Basin(standardized values for chondrites according to Bounton[42],primitive mantle normalized values according to Sun and McDonough[43])


5 讨论

5.1 成岩时代

在冀北地区,不同学者对髫髻山组火山岩开展了多次测年工作。如Davis等[15]在承德及北京十三陵地区通过Ar-Ar定年,获得髫髻山组下部年龄为160.7±0.8 Ma、161.1±1.9 Ma;Cope[44]在承德地区通过Ar-Ar定年,获得髫髻山组下部及顶部年龄为159.7±1.3 Ma、152.6±0.3 Ma;赵越等[14]在北京西山地区获得髫髻山组底部锆石U-Pb SHRIMP年龄为156.6±3.1 Ma;张宏等[17]在滦平地区髫髻山组顶部获得LA-ICP-MS锆石U-Pb年龄为162.8±3.2 Ma;于海飞等[23]在北京十三陵地区获得髫髻山组底部LA-ICP-MS锆石U-Pb年龄为157.2±1.2 Ma。

本文通过LA-ICP-MS锆石U-Pb定年方法,获得冀西北宣化盆地髫髻山组中上部的粗面岩成岩年龄为161.1±1.2 Ma和162.5±1.3 Ma。国际地层表(Gradstein等[45])将早中侏罗世时代界定为174.1±1.0 Ma,中晚侏罗世时代为163.5±1.0 Ma,这与众多学者获得的髫髻山组年龄基本一致,髫髻山组时代归属中侏罗世晚期到晚侏罗世早期较为合适。

5.2 岩浆源区性质及成因

许多学者[19,46-48]认为燕山造山带髫髻山组岩浆起源于加厚地壳条件下基性下地壳的部分熔融;而王蕊等[22]则认为京西盆地髫髻山组为壳幔岩浆混合模式形成。李伍平等[49]又指出燕山造山带中—晚侏罗世髫髻山期(蓝旗期)火山岩具有埃达克岩或太古宙TTG的地球化学特征,属于埃达克质火山岩,并认为这些火山岩的形成与幔源岩浆底侵作用引起下地壳的玄武质岩石的部分熔融有关。

本次工作所采集的样品中,烧失量均集中在0.89%~2%,显示蚀变程度较低(烧失量<3%),同时在镜下观察发现岩石样品也较新鲜,在原始地幔标准化的微量元素蛛网图中,Rb、Ba和K含量波动较小,同样反映出后期蚀变对岩石影响较弱,因此本文认为可以用该套火山岩的地球化学信息表征原始岩浆特征。

宣化盆地髫髻山组粗面岩样品具高硅、高碱,贫Ca、Mg,相对富铝特征;岩石中Th含量(7.45~9.05)×10-6,平均8.18×10-6,高于中地壳(6.5×10-6)及下地壳(0.42×10-6)[50],且富集LREE,显示出明显的地壳重熔特征;在Harker图解中(图7),主要氧化物Al2O3、Fe2O3、K2O、MnO、Na2O和TiO2与SiO2呈负相关性,指示长石类矿物、铁镁矿物(如角闪石和黑云母)和含钛(如钛铁矿、钛矿和金红石)矿物的分离结晶,表明该火山岩是连续演化的产物;据路凤香等[51],由陆壳沉积物熔融形成的花岗岩w(K2O)/w(Na2O)>1,而由幔源岩浆分异形成的花岗岩w(K2O)/w(Na2O)<1,研究区w(K2O)/w(Na2O)为1.26~1.79,平均1.42,为壳源熔融形成特征;据Taylor等[52]研究,幔源岩浆w(Rb)/w(Sr)比通常小于0.05,幔壳混合源介于0.05~0.5,壳源岩浆大于0.5,本区粗面岩样品w(Rb)/w(Sr)平均值为2.18,也显示出明显的壳源特征;在A/FM—C/FM图中,区内粗面岩样品成分落入变质杂砂岩部分熔融区和变质泥岩部分熔融区附近(图8a),进一步表明其为地壳部分熔融而成。此外,研究区粗面岩具低Sr(平均值为93.41×10-6)、高Yb(平均值为3.40×10-6)的特征,与俯冲洋壳部分熔融形成的高Sr(>400×10-6)、低Yb(<1.9×10-6)的埃达克岩特征明显不同,在Sr/Y—Y图解中(图8b),样品大部分落在正常岛弧区域内。上述岩石地球化学特征说明形成宣化盆地粗面质火山岩的岩浆源区为大陆地壳物质熔融的产物。

图7

图7   宣化盆地髫髻山组粗面岩主量元素Harker图解

Fig.7   Harker diagram of major elements of trachytes in the Tiaojishan Formation, Xuanhua Basin


图8

图8   宣化盆地髫髻山组粗面岩的A/FM—C/FM图解(a)[53]和Sr/Y—Y图解(b)[54]

Fig.8   A/FM—C/FM diagram (a)[53] and Sr/Y—Y diagram (b)[54] of trachytes in the Tiaojishan Formation,Xuanhua Basin


5.3 构造环境

据董树文等[12],华北克拉通自古生代后一直处于多板块汇聚的大地构造环境,多次期的板块俯冲、弧—陆碰撞、陆—陆碰撞等造山作用在其周缘广泛发育[1-4]。冀西北宣化盆地位于华北克拉通北缘燕山构造带,其在中生代—早新生代期间构造和岩浆活动频繁而剧烈,形成现今复杂的构造样式。目前众多学者皆认为冀北燕山构造带在早白垩世(约135 Ma)之后整体处于伸展构造环境[30,43,55-56],但对于早侏罗晚期—早白垩世(175~135 Ma)期间该区构造环境还有很多分歧,大部分地质工作者认为燕山构造带在该时期处于挤压构造环境,冀北地区的沉积盆地的发育和演化都受到区域挤压构造控制[4,25,28,43,57-60];而另一部学者则认为燕山构造带西段土城子时期发育的赤城盆地和宣化盆地形成于伸展构造环境[61-62],渠洪杰等[63]通过对燕山构造带中段承德盆地中上侏罗—下白垩统土城子组沉积地层进行沉积相分析、古流和物源分析,同样认为该盆地属于伸展构造环境下。

前已述及,冀西北宣化盆地粗面质火山岩的岩浆源区主要是大陆地壳物质。在Pearce等[64]提出的构造环境判别图解中,粗面岩样品均落在火山弧花岗岩(VAG)区域内(图9a、b),在R1—R2判别图解上落入晚造山期花岗岩与非造山区A型花岗岩区界线附近(图9c);在Rb/30—Hf—3Ta图解中落入火山弧花岗岩区域内(图9d)。上述图解进一步说明髫髻山组火山岩形成于挤压构造背景下的活动大陆边缘火山弧环境。

图9

图9   宣化盆地髫髻山组粗面岩构造判别[64-66]

WPG—板内花岗岩;VAG—火山弧花岗岩;syn-COLG—同碰撞花岗岩;ORG—大洋中脊斜长花岗岩。1—地幔斜长花岗岩;2—破坏性活动板块边缘(板块碰撞前)花岗岩;3—板块碰撞后隆起期花岗岩;4—晚造山期花岗岩;5—非造山区A型花岗岩;6—同碰撞S型花岗岩;7—造山期后A型花岗岩

Fig.9   Discrimination map of trachytes in the Tiaojishan Formation, Xuanhua Basin[64-66]

WPG—intraplate granite; VAG—volcanic arc granite; syn-COLG—syncolliding granite; ORG—mid-ocean ridge plagiogranite;1—mantle plagioclase granite; 2 —destructive active plate margin (pre-plate collision) granite; 3—post-plate collision uplift granite; 4—late orogenic granite; 5—A-type granite in non-orogenic mountains; 6—syncollision S-type granite; 7—post-orogenic A-type granite


另外,发育于燕山构造带中段的逆冲断层(丰宁—隆化断裂、冷口断裂、大庙—娘娘庙断裂以及六道河断裂等)在九龙山组沉积期间均表现出向南逆冲的特征[29,57]。赵丽君[67]将燕山构造带东段蓟县—宽城—凌源一带NE向逆冲断层的变形时间约束为160 Ma左右。同样,Davis等[15]在燕山构造带东段的辽西地区报道了喀左逆冲断层在173 Ma时期的逆冲活动。

综上,冀西北宣化盆地髫髻山组粗面岩形成于挤压构造环境,因此在中侏罗晚期至晚侏罗世早期燕山造山带应处于挤压构造背景较为合理。

6 结论

1)获得冀西北宣化盆地髫髻山组中上部粗面岩成岩年龄为161.1±1.2 Ma和162.5±1.3 Ma,与众多学者获得的髫髻山组年龄基本一致,髫髻山组时代属中侏罗世晚期—晚侏罗世早期较为合适。

2)冀西北宣化盆地髫髻山组中上部发育的粗面岩具典型的大陆地壳物质熔融成因的地球化学特征,而非前人认为的壳幔岩浆混合模式形成。

3)髫髻山组粗面岩具有挤压性质大陆边缘弧火山岩特征,认为在中侏罗晚期至晚侏罗世早期燕山造山带应处于挤压构造背景。

致谢

本文是以“河北省沙岭子、宣化县、深井镇、涿鹿县1∶5万区域地质调查”项目为依托,文中所用的原始数据是项目组成员在极为恶劣的工作生活条件下取得的,在此对项目组人员表示感谢,并衷心地感谢审稿人对本文提出的宝贵意见和建议。

参考文献

Zorin Y A.

Geodynamics of the western part of the Mongolia-Okhotsk collisional belt,Trans-Baikal region (Russia) and Mongolia

[J]. Tectonophysics, 1999, 306:33-56.

DOI:10.1016/S0040-1951(99)00042-6      URL     [本文引用: 2]

Zhang H, Wang M, Liu X.

LA-ICP-MS dating of Zhangjiakou Formation volcanic rocks in the Zhangjiakou region and its geological significance

[J]. Progress in Natural Science, 2008, 18:975-981.

DOI:10.1016/j.pnsc.2008.01.028      URL     [本文引用: 2]

Zhang S H, Zhao Y, Liu X C, et al.

Late Paleozoic to early Mesozoic mafic-ultramafic complexes from the northern North China Block:Constraints on the composition and evolution of the lithospheric mantle

[J]. Lithos, 2009, 110:229-246.

DOI:10.1016/j.lithos.2009.01.008      URL     [本文引用: 2]

Liu S F, Lin C F, Liu X B, et al.

Syn-tectonic sedimentation and its linkage to fold-thrusting in the region of Zhangjiakou,North Hebei,China

[J]. Science China:Earth Sciences, 2018, 61:681-710.

DOI:10.1007/s11430-017-9175-3      URL     [本文引用: 3]

马寅生, 崔盛芹, 赵越, .

华北北部中新生代构造体制的转换过程

[J]. 地质力学学报, 2002, 8(1):15-25.

[本文引用: 1]

Ma Y S, Cui S Q, Zhao Y, et al.

The transformation process of Mesozoic-Cenozoic tectonic system in northern North China

[J]. Chinese Journal of Geomechanics, 2002, 8(1):15-25.

[本文引用: 1]

Wong W H.

Crustal movenments and igneous activities in eastern China since Mesozoic time

[J]. Bulletin of the Geological Society of China, 1927, 6(1):9-36.

DOI:10.1111/acgs.1927.6.issue-1      URL     [本文引用: 1]

Wong W H.

The Mesozoic orofenic movenment in Eastern China

[J]. Bulletin of the Geological Society of China, 1929, 8(1):33-44.

DOI:10.1111/acgs.1929.8.issue-1      URL     [本文引用: 1]

赵越, 高海龙, 张拴宏, .

回眸燕山运动——致敬“燕山运动”的创建者和中国地质学会的奠基人翁文灏

[J]. 地质学报, 2022, 96(5):1510-1523.

[本文引用: 1]

Zhao Y, Gao H L, Zhang S H, et al.

A brief century review of the “Yanshan Movement” and its founder

[J]. Acta Geologica Sinica, 2022, 96(5):1510-1523.

[本文引用: 1]

乜长顺. 辽西宁城盆地中侏罗世同构造沉积对燕山运动A幕的指示[D]. 北京: 中国地质大学(北京), 2021.

[本文引用: 1]

Nie C S. Middlle Jurassic syntectonic deposits in Ningcheng basin,western Liaoning Province:Implications for phase A of Yanshan movement[D]. Beijing: China University of Geosciences (Beijing), 2021.

[本文引用: 1]

赵越, 杨振宇, 马醒华.

东亚大陆构造发展的重要转折

[J]. 地质科学, 1994, 29(2):105-119.

[本文引用: 1]

Zhao Y, Yang Z Y, Ma X H.

An important turning point in the tectonic development of the East Asian continent

[J]. Geological Sciences, 1994, 29(2):105-119.

[本文引用: 1]

赵越, 徐刚, 张拴宏, .

燕山运动与东亚构造体制的转变

[J]. 地学前缘, 2004, 11(3):319-328.

[本文引用: 1]

Zhao Y, Xu G, Zhang S H, et al.

The Yanshan movement and the transformation of east Asian tectonic system

[J]. Frontiers of Geosciences, 2004, 11(3):319-328.

[本文引用: 1]

董树文, 张岳桥, 龙长兴, .

中国侏罗纪构造变革与燕山运动新诠释

[J]. 地质学报, 2007, 81(11):1449-1461.

[本文引用: 2]

Dong S W, Zhang Y Q, Long C X, et al.

A new interpretation of Jurassic tectonic transformation and Yanshan movement in China

[J]. Acta Geologica Sinica, 2007, 81(11):1449-1461.

[本文引用: 2]

张岳桥, 董树文, 赵越, .

华北侏罗纪大地构造:综评与新认识

[J]. 地质学报, 2007, 81(11):1462-1480.

[本文引用: 1]

Zhang Y Q, Dong S W, Zhao Y, et al.

Jurassic geotectonics in north China:Comprehensive review and new understanding

[J]. Chinese Journal of Geology, 2007, 81(11):1462-1480.

[本文引用: 1]

赵越, 张拴宏, 徐刚, .

燕山板内变形带侏罗纪主要构造事件

[J]. 地质通报, 2004, 23(9/10):854-863.

[本文引用: 2]

Zhao Y, Zhang S H, Xu G, et al.

Main Jurassic tectonic events in Yanshan intraplate deformation zone

[J]. Geological Bulletin, 2004, 23(9/10):854-863.

[本文引用: 2]

Davis G A, Zheng Y D, Wang C, et al.

Mesozoic tectonic evolution of the Yanshan fold and thrust belt,with emphasis on Hebei and Liaoning provinces,norther China

[G]//Hendrix M S,Davis G A,eds. Paleozoic and Mesozoic tectonic evolution of central Asia:From continental assembly to intra-continental deformation, Colorado.Geological Society of America Memoir, 2001:171-197.

[本文引用: 3]

张长厚, 吴淦国, 王根厚.

冀东地区燕山中段北西向构造带:构造属性及其年代学

[J]. 中国科学D辑:地球科学, 2004, 34(7):600-612.

[本文引用: 1]

Zhang C H, Wu G G, Wang G H.

NW trending tectonic belt in the middle section of Yanshan Mountains in eastern Hebei region:Tectonic properties and their chronology

[J]. Science in China Series D:Earth Science, 2004, 34(7):600-612.

[本文引用: 1]

张宏, 柳小明, 高山, .

辽西凌源地区张家口组的重新厘定及其意义——来自激光ICP-MS锆石U-Pb年龄的制约

[J]. 地质通报, 2005, 24:110-117.

[本文引用: 2]

Zhang H, Liu X M, Gao S, et al.

The redefinition of the Zhangjiakou Formation and its significance in the Lingyuan area of western Liaoning:Constraints from laser ICP-MS zircon U-Pb age

[J]. Geological Bulletin, 2005, 24:110-117.

[本文引用: 2]

袁洪林, 柳小明, 刘永胜, .

北京西山晚中生代火山岩U-Pb锆石年代学及地球化学研究

[J]. 中国科学D辑:地球科学, 2005, 35(9):821-836.

[本文引用: 1]

Yuan H L, Liu X M, Liu Y S, et al.

U-Pb zircon geochronology and geochemistry of late Mesozoic volcanic rocks in Xishan,Beijing

[J]. Science in China Series D:Earth Science, 2005, 35(9):821-836.

[本文引用: 1]

李伍平, 路凤香, 李献华, .

北京西山髫髻山组火山岩的地球化学特征与岩浆起源

[J]. 岩石矿物学杂志, 2001, 20(2):123-133.

[本文引用: 2]

Li W P, Lu F X, Li X H, et al.

Geochemical characteristics and magmatic origin of volcanic rocks in the Tijishan Formation,Xishan,Beijing

[J]. Journal of Rock Mineralogy, 2001, 20(2):123-133.

[本文引用: 2]

刘健, 赵越, 柳小明.

冀北承德盆地髫髻山组火山岩的时代

[J]. 岩石学报, 2006, 22(11):2617-2630.

[本文引用: 1]

Liu J, Zhao Y, Liu X M.

Age of the volcanic rocks of the Tiaojishan Formation in the Chengde Basin,northern Hebei

[J]. Acta Petrologica Sinica, 2006, 22(11):2617-2630.

[本文引用: 1]

徐刚, 赵越, 吴海, .

辽西凌源牛营子盆地晚三叠世—中侏罗世地层层序及区域对比

[J]. 地球学报, 2005, 26(4):299-308.

[本文引用: 1]

Xu G, Zhao Y, Wu H, et al.

Late Triassic-middle Jurassic stratigraphic sequence and regional correlation in Niuyingzi Basin,Lingyuan,Western Liaoning

[J]. Chinese Journal of Geosciences, 2005, 26(4):299-308.

[本文引用: 1]

王蕊, 陈斌, 柳小明.

北京西山地区髫髻山组和东岭台组火山岩的地球化学特征与岩浆起源

[J]. 高校地质学报, 2007, 13(3):603-612.

[本文引用: 2]

北京西山地区分布着大量的髫髻山组火山岩,区域上髫髻山组被东岭台组角度不整合覆盖。西山地区火山岩样品的主要氧化物含量变化范围比较大,如: SiO2=51.94%~77.30%,Al2O3=12.85%~19.17%,Na2O=1.65%~5.82%,K2O=0.83%~4.52%,Fe2O3 =0.95%~9.30%,CaO=0.13%~7.08%,且主要氧化物的含量与SiO2具有线性相关关系。同时,这些火山岩具有LREE富集、HREE明显亏损、Eu异常不明显、高的Sr,Ba 含量和Sr/ Y,La/Yb 比值等特征。火山岩的钕同位素成分变化大,且相当富集(εNd=-11~-17),都分布在古老下地壳和富集地幔之间, 因此推断北京西山地区髫髻山组火山岩和东岭台组火山岩的形成与富集地幔起源的基性岩浆与古老下地壳组分相互作用有关。

Wang R, Chen B, Liu X M.

Geochemical characteristics and magmatic origin of the volcanic rocks of the Tijishan Formation and Donglingtai Formation in the Xishan area of Beijing

[J]. Journal of Geology of Universities, 2007, 13(3):603-612.

[本文引用: 2]

于海飞, 张志诚, 帅歌伟, .

北京十三陵—西山髫髻山组火山岩年龄及其地质意义

[J]. 地质论评, 2016, 62(4):807-826.

[本文引用: 2]

Yu H F, Zhang Z C, Shuai G W, et al.

The age and geological significance of the volcanic rocks of the Ming Tombs-Xishan Tijishan Formation in Beijing

[J]. Geological Review, 2016, 62(4):807-826.

[本文引用: 2]

赵越.

燕山地区中生代造山运动及构造演化

[J]. 地质论评, 1990, 36(1):1-13.

[本文引用: 1]

Zhao Y.

Mesozoic orogeny and tectonic evolution in Yanshan area

[J]. Geological Review, 1990, 36(1):1-13.

[本文引用: 1]

Cope T D, Graham S A.

Upper crustal response to Mesozoic tectonism in western Liaoning,North China,and implications for lithospheric delamination

[J]. Geological Society, 2007, 280:201-222.

DOI:10.1144/SP280.10      URL     [本文引用: 2]

Liu J, Zhao Y, Liu X M, et al.

Rapid exhumation ofbasement rocks along the northern margin of the North China cratonin the early Jurassic:Evidence from the Xiabancheng Basin,Yanshan Tectonic Belt

[J]. BasinRes, 2012, 24:544-558.

[本文引用: 1]

Li C M, Zhang C H, Cope T D, et al.

Out-of-sequence thrustingin polycyclic thrust belts:An example from the Mesozoic Yanshanbelt,North China Craton

[J]. Tectonics, 2016, 35:2082-2116.

DOI:10.1002/2016TC004187      URL     [本文引用: 1]

Liu S F, Su S, Zhang G W.

Early Mesozoic basin development in North China:Indications of cratonic deformation

[J]. Journal of Asian Earth Sciences, 2013, 62:221-236.

DOI:10.1016/j.jseaes.2012.09.011      URL     [本文引用: 2]

张长厚, 李程明, 邓洪菱, .

燕山—太行山北段中生代收缩变形与华北克拉通破坏

[J]. 中国科学:地球科学, 2011, 41:593-617.

[本文引用: 2]

Zhang C H, Li C M, Deng H L, et al.

Mesozoic shrinkage and deformation of the northern section of Yanshan-Taihang Mountains and the destruction of the North China Craton

[J]. Science in China:Earth Science, 2011, 41:593-617.

[本文引用: 2]

Zhang S H, Zhao Y, Davis G.A., et al.

Temporal and spatial variations of Mesozoic magmatism and deformation in the North China Craton:Implications for lithospheric thinning and decratonization

[J]. Earth-Science Reviews, 2014, 131:49-87.

DOI:10.1016/j.earscirev.2013.12.004      URL     [本文引用: 2]

甄世民, 王大钊, 白海军, .

华北克拉通北缘张家口—宣化地区古生代—中生代岩浆构造活动与成矿作用

[J]. 岩石学报, 2021, 37(6):1619-1652.

[本文引用: 2]

Zhen S M, Wang D Z, Bai H J, et al.

Mineralization and magmatic tectonics of Paleo-Mesozoic-Xuanhua from Zhangjiakou,North Margin of North China Craton

[J]. Acta petrologica sinica, 2021, 37(6):1619-1652.

DOI:10.18654/1000-0569/2021.06.01      URL     [本文引用: 2]

白春东, 李金和, 杨济远, .

河北省沙岭子、宣化县、深井镇、涿鹿县1∶5万区域地质调查

[R]. 河北省区域地质调查院, 2022.

[本文引用: 2]

Bai C D, Li J H, Yang J Y, et al.

1∶50,000 regional geological survey of Shalingzi,Xuanhua County,Shenjing Town,and Zhuolu County in Hebei Province

[R]. Hebei Institute of Regional Geological Survey, 2022.

[本文引用: 2]

Thompson J, Meffre S, Danyushevsky L.

Impact of air,laser pulse width and fluence on U-Pb dating of zircons by LA-ICPMS

[J]. Journal of Analytical Atomic Spectrometry, 2018, 33:221-230.

DOI:10.1039/C7JA00357A      URL     [本文引用: 1]

Paton C, Woodhead J D, Hellstrom J C, et al.

Improved laser ablation U-Pb zircon geochronology through robust downhole fractionation correction

[J]. Geochemistry Geophysics Geosystems, 2010, 11:Q0AA06.

[本文引用: 2]

Ludwig K R.

User's manual for Isoplot/Ex, version 3.00:A geochronological toolkit for Microsoft Excel

[J]. Berkeley Geochronology Center Special Publication,Berkeley, 2003, 4:1-70.

[本文引用: 1]

高剑峰, 陆建军, 赖鸣远, .

岩石样品中微量元素的高分辨率等离子质谱分析

[J]. 南京大学学报:自然科学版, 2003, 39(6):844-850.

[本文引用: 1]

Gao J F, Lu J J, Lai M Y, et al.

High-resolution plasma mass spectrometry analysis of trace elements in rock samples

[J]. Journal of Nanjing University:Natural Science Edition, 2003, 39(6):844-850.

[本文引用: 1]

Belousova E, Griffin W, O’Reilly S Y, et al.

Igneous zircon:Trace element composition as an indicator of source rock type

[J]. Contributions to Mineralogy and Petrology, 2002, 143(5):602-622.

DOI:10.1007/s00410-002-0364-7      URL     [本文引用: 1]

邓晋福, 刘翠, 冯艳芳, .

关于火成岩常用图解的正确使用:讨论与建议

[J]. 地质论评, 2015, 61(4):717-734.

[本文引用: 1]

Deng J F, Liu C, Feng Y F, et al.

On the correct use of commonly used diagrams for igneous rocks:Discussion and suggestions

[J]. Geological Review, 2015, 61(4):717-734.

[本文引用: 1]

Middlemost E A K.

Naming materials in the magma/igneous rock system

[J]. Earth Science Reviews, 1994, 37(3/4):215-224.

DOI:10.1016/0012-8252(94)90029-9      URL     [本文引用: 2]

Peccerillo R, Taylor S R.

Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area,Northern Turkey,Contrib

[J]. Mineral Petrol, 1976, 58:63-81.

[本文引用: 2]

Middlemost E A K. Magmas and magmatic rocks[M]. London:Longman,1985.

[本文引用: 2]

Boynton W V.

Geochemistry of the rare earth elements:Meteorites studies

[G]//Henderson P. Rare Earth Element Geochemistry, New York: Elservier, 1984:63-114.

[本文引用: 2]

Sun S S, McDonough W F.

Chemical and isotopic systematics of oceanic basalts:Implicatons for mantle composistion and processes[G]

// Saunders A D,Norry M J.Magmatism in the Ocean Bssins,London:Specical Publications,1989.

[本文引用: 4]

Cope T C. Sedimentary evolution of the Yanshan fold-thrust belt,northeast China[M]. Califonia: Stanford University, 2003.

[本文引用: 1]

Gradstein F M, Ogg J G, Schmitz M, et al.

The geologic time scale

[M]. Amsterdam:Elsevier, 2012.

[本文引用: 1]

张旗, 王元龙, 王焰, .

燕山期中国东部高原下地壳组成初探:埃达克质岩Sr-Nd同位素制约

[J]. 岩石学报, 2001, 17(4):505-513.

[本文引用: 1]

Zhang Q, Wang Y L, Wang Y, et al.

A preliminary study on the composition of the lower crust of the eastern Chinese plateau during the Yanshanian period:Constrained by Sr-Nd isotopes of adakitic rocks

[J]. Chinese Journal of Petrology, 2001, 17(4):505-513.

[本文引用: 1]

葛小月, 李献华, 陈志刚, .

中国东部燕山期高Sr低Y型中酸性火山岩的地球化学特征及成因:对中国东部地壳厚度的制约

[J]. 科学通报, 2002, 47(6):474-480.

[本文引用: 1]

Ge X Y, Li X H, Chen Z G, et al.

Geochemical characteristics and genesis of Yanshanian high Sr low Y-type intermediate-acid volcanic rocks in eastern China:Constraints on crustal thickness in eastern China

[J]. Scientific Bulletin, 2002, 47(6):474-480.

[本文引用: 1]

路凤香, 郑建平, 张瑞生, .

地壳与弱化岩石圈地幔的相互作用:以燕山造山带为例

[J]. 地球科学, 2006, 31(1):1-7.

[本文引用: 1]

Lu F X, Zheng J P, Zhang R S, et al.

The interaction between the crust and the weakened lithospheric mantle:Taking the Yanshan orogenic belt as an example

[J]. Earth Science, 2006, 31(1):1-7.

DOI:10.29382/eqs-2018-0001-1      URL     [本文引用: 1]

李伍平, 赵越, 李献华, .

燕山造山带中—晚侏罗髫髻山期(蓝旗期)火山岩的成因及其动力学意义

[J]. 岩石学报, 2007, 23(3):557-564.

[本文引用: 1]

Li W P, Zhao Y, Li X H, et al.

Genesis and dynamic significance of volcanic rocks in the middle-late Jurassic Tijishan period (blue flag period) in the Yanshan orogenic belt

[J]. Acta Petrologica Sinica, 2007, 23(3):557-564.

[本文引用: 1]

Rudnick R L, Gao S.

Composition of the continental crust

[G]//Hoddand H D,Turekian K K.The crust Vol.3 treatise on geochemisty, Oxford:Elsevier-Pergamon, 2003.

[本文引用: 1]

路凤香, 桑隆康. 岩石学[M]. 北京: 地质出版社, 2002:373-380.

[本文引用: 1]

Lu F X, Sang L K. Petrology[M]. Beijing: Geological Publishing House, 2002:373-380.

[本文引用: 1]

Taylor S R, Mclenann S M. The continental crust:Its composition and evolution[M]. Blackwell: Oxford Press,1985.

[本文引用: 1]

Alther R, Holl A, Hegner E, et al.

High-potassium,calc-alkaline I-type plutonism in the European Variscides:Northern Vosges (France) and northern Schwarzwald (Germany)

[J]. Lithos, 2000, 50(1):51-73.

DOI:10.1016/S0024-4937(99)00052-3      URL     [本文引用: 2]

Defant M J and Drummond M S.

Derivation of some morden arc magmas by of young subducted lithosphere

[J]. Nature, 1990, 347:662-665.

DOI:10.1038/347662a0      [本文引用: 2]

Wei H H, Meng Q R, Wu G L, et al.

Multiple controls on rift sedimentation in volcanic settings:Insights from the anatomy of a small Early Cretaceous basin in the Yanshan belt,northern North China

[J]. GSA Bulletin, 2012, 124(3/4):380-399.

DOI:10.1130/B30495.1      URL     [本文引用: 1]

Zhu G, Chen Y, Jiang D, et al.

Rapid change from compression to extension in the north China craton during the early cretaceous:Evidence from the Yunmengshan metamorphic core complex

[J]. Tectonophysics, 2015, 656:91-110.

DOI:10.1016/j.tecto.2015.06.009      URL     [本文引用: 1]

Liu S F, Gurnis M., Ma P F, et al.

Reconstruction of northeast Asian deformation integrated with western Pacific plate subduction since 200 Ma

[J]. Earth-Science Review, 2017, 175:114-142.

DOI:10.1016/j.earscirev.2017.10.012      URL     [本文引用: 2]

Liu J, Zhao Y, Liu A, et al.

Late Jurassic to early Cretaceous sedimentary-tectonic development in the Chengde Basin,Yanshan fold-thrust belt,North China Craton

[J]. Journal of Asian Earth Sciences, 2015, 114:611-622.

DOI:10.1016/j.jseaes.2014.08.019      URL     [本文引用: 1]

史肖飞, 刘少峰, 林成发.

燕山构造带西段千家店盆地生长构造与生长地层

[J]. 中国科学, 2019, 49(7):1116-1133.

[本文引用: 1]

Shi X F, Liu S F, Lin C F.

Growth structure and growth strata of Qianjiadian Basin,western section of Yanshan structural belt

[J]. Chinese Science, 2019, 49(7):1116-1133.

[本文引用: 1]

Wang Y, Sun L, Zhou L, et al.

Discussion on the relationship between the Yanshanian movement and cratonic destruction in north China

[J]. Science China Earth Sciences, 2018, 61:499-514.

DOI:10.1007/s11430-017-9177-2      [本文引用: 1]

卲济安, 孟庆任, 魏海泉, .

冀西北晚侏罗世火山—沉积盆地的性质及构造环境

[J]. 地质通报, 2003, 22(10):751-761.

[本文引用: 1]

Shao J A, Meng Q R, Wei H Q, et al.

Properties and tectonic environment of the Late Jurassic volcanic-sedimentary basin in northwestern Hebei

[J]. Geological Bulletin, 2003, 22(10):751-761.

[本文引用: 1]

Qi G W, Zhang J J, Wang M.

Mesozoic tectonic setting of rift basins in eastern North China and implications for destruction of the North China Craton

[J]. Journal of Asian Earth Sciences, 2015, 111:414-427.

DOI:10.1016/j.jseaes.2015.06.022      URL     [本文引用: 1]

渠洪杰, 张英利.

承德地区土城子组沉积特征及其构造意义

[J]. 大地构造与成矿学, 2005, 29(4):465-474.

[本文引用: 1]

Qu H J, Zhang Y L.

Sedimentary characteristics and tectonic significance of the Tuchengzi Formation in Chengde area

[J]. Geotectonics and Mineralization, 2005, 29(4):465-474.

[本文引用: 1]

Pearce J A, Harris N B W, Tindle A G.

Trace element discrimination diagrams for the tectonic interpretation of granitic rocks

[J]. Journal of Petrology, 1984, 25:956-983.

DOI:10.1093/petrology/25.4.956      URL     [本文引用: 3]

Batchelor R A, Bowden P.

Petrogenetic interpretation of granitoid rock series using multicationic parameters

[J]. Chem.Geol., 1985, 48:43-55.

[本文引用: 2]

Harris N B W, Pearce J A, Tindle A G.

Geochemical characteristics of Collision-zone magmatism

[J]. Geological Society,London,Special Publications, 1986, 19(1):67-81.

DOI:10.1144/GSL.SP.1986.019.01.04      URL     [本文引用: 2]

赵丽君. 华北北部北东向构造形成的变形分析及时间约束[D]. 北京: 中国地质大学(北京), 2010.

[本文引用: 1]

Zhao L J. Deformation analysis and time constraints of NE trending tectonic formation in northern North China[D]. Beijing: China University of Geosciences (Beijing), 2010.

[本文引用: 1]

/

京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com