E-mail Alert Rss
 

物探与化探, 2020, 44(4): 820-829 doi: 10.11720/wtyht.2020.1178

生态环境调查

广西中东部9县区农田土壤Se输入通量研究

陈雪,1,2, 杨忠芳,1, 陈岳龙1, 杨琼1, 王磊3,4, 韦雪姬4,5

1.中国地质大学(北京) 地球科学与资源学院,北京 100083

2.中国人民武装警察部队 黄金地质研究所,河北 廊坊 065000

3.广西壮族自治区第四地质队,广西 南宁 530031

4.广西土地质量地球化学评价办公室,广西 南宁 530023

5.广西地球物理勘察院,广西 柳州 545005

Selenium input flux in farmland soil of 9 counties in the middle east of Guangxi

CHEN Xue,1,2, YANG Zhong-Fang,1, CHEN Yue-Long1, YANG Qiong1, WANG Lei3,4, WEI Xue-Ji4,5

1. China University of Geosciences(Beijing),Beijing 100083,China

2. Gold Geological Institute of CAPF,Langfang 065000,China

3. No. 4 Geological Party of Guangxi Zhuang Autonomic Region,Nangning 530031,China

4. Project Office of Land Quality Geochemical Assessment of Guangxi,Nanning 530023,China

5. Guangxi Geophysical Investigation Institute,Liuzhou 545005,China

通讯作者: 杨忠芳(1961-),女,教授,博士生导师,地球化学专业,主要从事生态地球化学教学和科研工作。Email:zfyang01@126.com

责任编辑: 蒋实

收稿日期: 2019-03-29   修回日期: 2019-11-21   网络出版日期: 2020-08-20

基金资助: 广西壮族自治区国土资源厅项目“广西中东部地区土壤硒元素和重金属元素地球化学研究”.  桂国土资发[2015]44号

Received: 2019-03-29   Revised: 2019-11-21   Online: 2020-08-20

作者简介 About authors

陈雪(1985-),女,博士研究生,工程师,地球化学专业,主要从事环境地球化学研究。Email:377850218@qq.com

摘要

对广西中东部9县区农田土壤中Se的输入通量进行了初步研究,确定大气干湿沉降是Se的主要输入途径。研究区大气干湿沉降通量平均值为6.36 g/(hm2·a),灌溉水输入通量次之,施肥输入通量明显较低,三者对土壤Se输入的贡献率分别为70.93%、27.35%和1.72%,其中不同县区三者比例略有不同,但大气干湿沉降贡献比例大部分在50% 以上。因此,大气干湿沉降是研究区Se的主要输入途径。研究区Se输入通量与进入农田土壤的As、Cd、Cr6+、Hg、Pb 5种重金属元素总量在各地区间的差异以及三种输入途径所占比例方面表现基本一致,说明外源输入在带入有益元素Se的同时也带入了一定量的重金属元素,因此要严格预防和控制外源输入造成的土壤重金属污染。

关键词: 输入通量 ; Se ; 重金属污染 ; 农田土壤 ; 广西

Abstract

The input flux of Se in farmland soil of 9 counties in the middle east of Guangxi were studied. By integrating various factors, the authors took the atmospheric wet and dry depositions as the main input way of Se. The average atmospheric wet and dry deposition flux in the whole study area is 6.36 g/(hm2·a), the irrigation water input flux possesses the second position, whereas the fertilization input flux is obviously lower. They account for 70.93%,27.35% and 1.72% of Se in soil respectively. Their proportions are somewhat different among 9 counties of the study area: the contribution of the atmospheric wet and dry deposition is the highest, accounting for more than 50%. Therefore, the atmospheric wet and dry depositions seem to be the main input ways of Se in the study area. The regional differences of Se input flux and the proportion of different input routes in the study area are basically consistent with the total amount of As, Cd, Cr6+, Hg and Pb in the field soils. These data show that the inputs bring in not only the beneficial element Se but also a certain amount of heavy metals. Therefore, the pollution of heavy metals in soil caused by the inputs should be strictly prevented and controlled.

Keywords: input flux ; Se ; heavy metal pollution ; farmland soil ; Guangxi

PDF (2134KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

陈雪, 杨忠芳, 陈岳龙, 杨琼, 王磊, 韦雪姬. 广西中东部9县区农田土壤Se输入通量研究. 物探与化探[J], 2020, 44(4): 820-829 doi:10.11720/wtyht.2020.1178

CHEN Xue, YANG Zhong-Fang, CHEN Yue-Long, YANG Qiong, WANG Lei, WEI Xue-Ji. Selenium input flux in farmland soil of 9 counties in the middle east of Guangxi. Geophysical and Geochemical Exploration[J], 2020, 44(4): 820-829 doi:10.11720/wtyht.2020.1178

0 引言

硒(Se)是与人和动物健康密切相关的微量生命元素[1-2]。人体获取Se的主要途径为食物摄入,土壤是基础媒介。土壤中Se的含量和赋存状态对植物中Se含量水平具有决定性作用,因此土壤中Se的分布特征、赋存状态及来源成为当前研究的热点[3-7]。研究证明,土壤和植物中过量的Se会导致人和动物患“碱性病”和“盲珊症”等慢性中毒症[8];而土壤和植物中Se含量过低会引起人和动物发生白肌病、克山病、大骨节病等多种缺Se病[9]

全世界有40多个国家和地区缺Se,中国是世界上缺Se最严重的国家之一,低Se或缺Se地区约占全国总面积的72%,其中30%为严重缺Se地区[10-11]。然而,在这样的大背景下, 1∶250 000 多目标区域地球化学调查成果表明,广西富Se土壤面积多达21 200 km2,为截止到2013年我国圈定出的最大面积连片富Se土壤,较为罕见。自治区地矿局对南宁、北海、贵港3个地区4 350万亩土地的调查发现,富Se土壤达3 181万亩,其中富Se水田592.65万亩,旱地563.1万亩,林地1 553.85万亩,草地269.1万亩[12]。根据黄碧燕等对广西农产品产地土壤Se资源普查及分级评价研究的结果[13],广西农产品产地土壤28 568个普查点位Se含量范围为0.02×10-6~14.4×10-6,中位值为0.45×10-6,平均含量达0.49×10-6,是全国土壤Se平均含量(0.29×10-6[14])的1.7 倍。广西14 个地级市农产品产地土壤Se含量范围为0.34×10-6~0.57×10-6,均高于全国的平均水平,是全国土壤Se平均含量的1.2~1.9倍。

针对富Se土壤成因,已经有许多专家学者进行了探讨,总的认为,土壤Se有各种来源,如成土母质、大气沉降、灌溉水、污泥、农用石灰、化学肥料、人工加Se等[15]。由于地表土壤中Se与作物中Se含量具有直接的联系,因此研究农田生态系统中的Se输入通量,不但对认识Se的地球化学循环规律具有重要意义,而且对科学利用富Se土地资源具有重要的现实意义。通量通常定义为单位时间内,通过单位面积的物质的量[16]。在本次研究中,输入通量主要考虑面源影响,涉及到大气干湿沉降输入通量(D)、灌溉水输入通量(I)、施肥输入通量(F)。前人针对不同性质农田土壤Se输入通量做了相关研究[17-19],但没有进行Se与农田土壤的重金属元素相关性方面的研究。土壤Se资源的开发利用必须注意安全问题,生物补Se伴随有重金属潜在危害性, Se在土壤—生物系统迁移的同时,进入土壤的重金属元素也会沿着食物链传递,最终进入人体,危害健康。因此,要明确富Se地区是否存在重金属的污染与危害,并进行相关性分析与评价,这对开发安全高效、生态高值的富Se农产品极其重要[20]。笔者选取了广西中东部9县区,依托《广西中东部地区土壤硒元素和重金属元素地球化学研究》项目收集的广西 “农业办”1∶5 万土地质量地球化学调查资料,开展大气沉降、灌溉和施肥外源输入对农田区土壤Se含量的影响研究,以及Se与As、Cd、Cr6+、Hg、Pb 共5种重金属元素的相关性研究,以期对Se的不同来源能有更清晰的认识,对合理利用研究区农田富Se土壤及控制重金属污染防治具有一定意义。

1 研究区概况

研究区位于广西中东部,区域面积23 322 km2。区内气候为亚热带季风气候和南亚热带季风气候,年平均气温21.5 ℃,年平均降水量1 599.4 mm。地形以孤峰平原地形和残丘平原地形为主。土壤类型以赤红壤为主,也有少量砖红壤和红壤。研究区9个县区包括临桂县、鹿寨县、象州县、兴宾区、平南县、港南区、兴业县、北流市、博白县,其中临桂县属于桂北经济区,鹿寨县、象州县、兴宾区属于桂中经济区,平南县、港南区、兴业县、北流市、博白县属于桂东经济区。本研究区9县区所属5个市的土壤Se平均含量由高到低依次为来宾市、桂林市、柳州市、玉林市、贵港市,其中来宾市、桂林市、柳州市高于或等于广西农产品产地土壤Se平均含量水平,玉林市、贵港市低于广西农产品产地土壤平均Se含量水平[13]。前人对广西部分地区土壤Se地球化学特征及其富集来源进行了探讨。北流地区、兴业县和贵港地区的Se富集物质来源都以内源性为主[21-23]。不在本次研究区范围内的北部湾经济区[24]、全州县[25]、武鸣县[26]、柳城县[27]、横县[28]这几个地区,土壤Se也均主要来源于富 Se岩层。由此可见,成土母质是土壤形成的物质基础,是制约土壤中元素含量的最重要因素[29]。前人研究发现,不同时代成土母质,其Se含量存在一定的差异性,如变质岩>岩浆岩>沉积岩和酸性岩>基性岩[30]。同时,多数研究表明土壤Se含量不仅受成土母岩的影响,还受铁锰氧化物、硫化物成矿元素、有机质及pH值的影响[28]。另外,在不同土地利用方式下,土壤Se经过水热交替、物理化学及生物过程等作用下发生迁移贫化或富集,是影响土壤Se含量的重要因素之一[27]。在不同土地利用方式中,林地和草地中的Se由于树叶、草叶等在土壤表层腐烂堆积而富集于表层;在耕地中,长期耕作过程中由于Se大量支出而导致土壤Se含量减少,形成低Se土壤[31-32]。与此同时,工农业生产及环境污染状况也会对土壤Se的含量产生影响。桂北和桂中经济区(临桂县、鹿寨县、象州县、兴宾区)工业发展处于整个广西领先地位,重点发展以汽车为主的机械工业、电子工业、冶金工业、化学医药工业等。而桂东经济区(平南县、港南区、兴业县、北流市、博白县)主要开发本地有资源优势的轻化工、林化工业,发展技术密集型工业群[33]

2 样品采集与分析

2.1 布点与采样

按照DZ/T 0289-2015 《区域生态地球化学评价规范》[34]和DZ/T 0295-2016 《土地质量地球化学评价规范》[35]的要求,采集了大气干湿沉降、灌溉水、肥料样品。所有样品都分析Se元素以及As、Cd、Cr6+、Hg、Pb共5种重金属元素含量。图1为大气干湿沉降、肥料、灌溉水采样点位分布图。

图1

图1   广西中东部地区3种外源的采样点位分布

Fig.1   Map of the sampling locations of 3 outside-sourced in the middle east of Guangxi


大气干湿沉降样品:从2014~2015年,共布设190个采样点。由于各县区项目承担单位不同,采样接尘缸口径各有差异,主要为 24.5、25和 30 cm的塑料桶,使用前用盐酸溶液(φHCl=10%)浸泡24 h后,再用纯水洗净。每个点放置3个接尘缸,位置为距地面 5~10 m的屋顶开阔平台上,采样口距平台1.0~1.5 m,以避免平台扬尘的影响,最后固定好接尘缸。大气干湿沉降样品每半年接收一次。

灌溉水样品:按照不同灌溉水系布设样点,于灌溉季节在灌溉口处采样,共采集样品500件。采集前用采样点处的水洗涤采样瓶和瓶塞2~3次。根据测试指标不同,每个样点需制备3瓶水样:聚乙烯瓶装原水1瓶,1 500 mL;玻璃瓶装酸化水1瓶,500 mL;聚乙烯瓶装加重铬酸钾水1瓶,500 mL。

肥料样品:共采集复合肥125件,氮肥35件,磷肥10件,钾肥26件,有机肥12件,共计208 件样品,同时记录不同种类肥料施用量,调查肥料的生产地等信息。

2.2 样品分析和质量监控

大气干湿沉降样品、灌溉水样品以及北流、博白、兴业地区的肥料样品由广西壮族自治区地质矿产测试研究中心分析测试,港南、平南、临桂地区的肥料样品由自然资源部南京矿产资源监督检测中心分析测试,鹿寨、象州、兴宾地区的肥料样品分别由自然资源部武汉矿产资源监督检测中心、自然资源部福州矿产资源监督检测中心以及自然资源部合肥矿产资源监督检测中心分析测试。

在分析过程,通过标准参考样、加标回收和室内外重复样、密码样的检验控制分析精密度和准确度。所有测试数据的精密度和准确度合格率都达到100%,符合DD2005-03 《生态地球化学评价样品分析技术要求(试行) 》[36](表1)。

表1   样品各元素分析方法及检出限

Table 1  Analysis method and detection limit of elements in samples

项目CdPbAsHgSeCr
灌溉水(南宁)0.06*0.07*0.4*0.05*0.2*0.004**
湿沉降(南宁)0.06*0.07*0.4*0.05*0.2*0.004**
干沉降(南宁)0.020.40.20.00020.0040.4
化肥(南宁)0.020.40.20.00020.0040.4
化肥(南京)0.0220.80.020.013
化肥(武汉)0.020.10.050.00050.010.4
化肥(合肥)0.0210.20.00050.011
化肥(福建)0.030.010.050.00050.010.01
测试方法ICP-MSICP-MSAFSAFSAFSCOL、ICP-MS、
ICP-AES

注:无角标数据含量单位为10-6;“*”数据含量单位为μg/L;“**”数据含量单位为mg/L;灌溉水和湿沉降中Cr6+在南宁采用COL法测定,肥料中Cr6+在合肥采用ICP-AES测定,肥料和干沉降中Cr6+在南宁、福建、武汉、南京采用ICP-MS测定。

新窗口打开| 下载CSV


3 结果与讨论

大气干湿沉降、施肥、灌溉水等外源因素,不仅为土壤带来有益元素Se,还会带来As、Cd、Cr6+、Hg、Pb 等有害重金属元素,对土壤造成污染。土壤中的重金属,进入植物体内,能诱导其体内产生某些对酶和代谢具有毒害作用和不利影响的物质,如H2O2、C2H2等,会对植物产生一定的毒害作用,引起株高、主根长度、叶面积等一系列生理特征的改变[37]。土壤中的重金属通过食物链进入人体,直接对人体健康造成威胁[38-39]。因此笔者将Se及As、Cd、Cr6+、Hg、Pb共5种重金属元素输入通量进行对比分析,以期对有益元素及有害元素的输入途径、输入量大小等获得更加清晰地认识,有助于富Se土壤的有效利用及预防和控制重金属污染。

3.1 大气干湿沉降年输入通量

大气干湿沉降是Se输入土壤的重要途径。Pa-cyna[40]等对全球人为源每年向大气的平均释Se量进行过估算;Wang等[41]根据降雨Se浓度估算中国每年Se沉降为600~1 200 t。

在本研究中,大气沉降样品分为溶液和沉淀两部分,分别测得Se及 As、Cd、Cr6+、Hg、Pb浓度,另根据实际样品溶液的总体积和沉淀物的总质量分别求得各元素的沉降量,再由沉降收集桶的接收面积计算得到每公顷土壤上各元素的年沉降通量(D):

D=(CsV+CiM)/(S×100),

式中,D为年沉降通量(g/(hm2·a)),S为接尘面积,即采样桶桶口面积(采样桶口径不同,其接尘面积也不同,分别为0.047、0.049、0.07 m2),Cs为溶液样品中某元素的浓度(μg/L),V为年溶液总体积(L/a),Ci为沉淀样品中某元素的质量分数(μg/g),M为年沉淀总质量(g/a) 。

根据190个大气干湿沉降接收点全年实测数据,计算得出广西中东部9县区Se及 As、Cd、Cr6+、Hg、Pb的大气干湿沉降输入通量(表2)。所有样点中, Se年沉降通量最大值为66.10 g/(hm2·a),最小值为0.93 g/(hm2·a),平均值为6.36 g/(hm2·a)。Se在各地区的沉降通量由大到小依次为临桂>鹿寨>兴宾>平南>北流>博白>港南>兴业>象州(图2)。Se年沉降通量表现为明显的地区差异,桂北和桂中经济区(临桂县、鹿寨县、兴宾区)高于桂东经济区(港南区、平南县、兴业县、北流市、博白县),而桂中经济区的象州县最低。

表2   研究区Se及重金属元素3外源输入通量g/(hm2·a)

Table 2  The 3 outside-sourced input fluxes of Se and heavy metals in study areag/(hm2·a)

地区输入途径AsCdCr6+HgPbSe
大气干湿沉降7.91.41262.6373.2
北流市施肥110.033.50.011.30.04
灌溉水0.0170.0000.0240.0000.0080.007
大气干湿沉降7.51.11112.1303.1
博白县施肥5.40.287.20.042.20.07
灌溉水0.0240.0000.0240.0000.0030.005
大气干湿沉降7.51.31121.0332.8
兴业县施肥130.315.90.10570.50
灌溉水0.0200.0010.0240.0010.0070.002
大气干湿沉降111.7721.6623.0
港南区施肥210.22160.054.30.25
灌溉水0.0250.0000.0240.0000.0010.001
大气干湿沉降6.71.3771.9725.6
平南县施肥5.50.126.20.021.30.05
灌溉水0.0190.0000.0120.0000.0050.001
大气干湿沉降134.01234.28715
鹿寨县施肥6.20.18190.022.40.11
灌溉水0.0080.0000.0240.0000.0020.002
大气干湿沉降144.31235.116215
临桂区施肥8.60.108.60.103.00.22
灌溉水0.0060.0000.0240.0000.0010.001
大气干湿沉降5.821582.9902.5
象州县施肥3.30.108.90.010.950.08
灌溉水0.0170.0000.0240.0010.0010.002
大气干湿沉降134.81143.4976.8
兴宾区施肥3.60.117.70.031.80.07
灌溉水0.0080.0000.0240.0010.0010.002

新窗口打开| 下载CSV


图2

图2   广西中东部9县区农田土壤Se及重金属大气干湿沉降平均输入通量

Fig.2   The average deposition flux of Se and heavy metals in 9 counties of the middle east of Guangxi


Se与5 种重金属元素的沉降通量最大值基本都出现在鹿寨县和临桂区,其中Se与As的空间分布趋势最为相似,说明两种元素的来源有一定共性,可能与煤的燃烧、颜料的生产、冶金以及化工生产有关。桂林和柳州是广西传统的工业区,柳州是我国工业重镇,制造中心;桂林的电子工业占广西的70%以上,食品工业、制药工业以及客车制造业位居广西前列。因此这两个地区的大气污染较其他区域严重,大气中的Se以及重金属元素沉降通量较大。而Cd的沉降最大通量出现在象州县,这可能是因为象州县拥有广西面积最大的工业园,园区内产生Cd污染的企业类型较多,因此造成大气污染物中Cd含量高于其他地区。Se与As、Cr6+ 的沉降量低值出现在象州县,这可能是因为象州县的化工类产业最少。而Cd、Hg、Pb的沉降量低值出现在桂东经济区, 这可能是因为该区的支柱产业为轻化工和林化工,这些企业产生的Cd、Hg、Pb污染相对较少。玉林市(北流、博白、兴业)沉降通量整体最低,北流、博白、兴业三地的差别很小,这与当地支柱产业类型以及污染治理程度紧密相关。总体来看,桂北和桂中经济区重金属沉降通量大于桂东经济区,5种重金属元素在各地区沉降输入通量总和由大到小依次为临桂>兴宾>鹿寨>象州>北流>平南>兴业>博白>港南(图2),这与干湿降尘中Se的沉降通量分布规律基本一致。由此可见,工业较为发达的桂北和桂中经济区污染排放更高,因此重金属元素和Se沉降通量均较高;而发展技术密集型工业群的桂东经济区污染较小,因此大气质量相对较好,重金属元素和Se排放量相对也较少。

3.2 灌溉水年输入通量

农田灌溉对于提高农作物的产量具有重要的意义,同时也是Se及重金属元素进入土壤的途径之一。根据《广西壮族自治区2014年水资源公报》和《广西壮族自治区2015年水资源公报》公布的数据,2014年全省农田实灌亩均用水量916 m3,有效利用系数为0.446,折合6 128 m3/(hm2·a),2015年全省农田实灌亩均用水量873 m3,有效利用系数为0.465,折合6 089 m3/(hm2·a),计算每公顷每年Se及重金属元素的输入通量(I), 即:

I=CwV/1000,

式中,I为年输入通量(g/(hm2·a)),Cw为样品中某元素的浓度(μg/L),V为年灌溉水量(m3/(hm2·a))。

研究区灌溉水Se输入通量平均值为2.45 g/(hm2·a),9个县区输入通量呈现明显的地区差异,位于河流下游的北流、博白、兴业的输入通量要高于位于河流上游的其他6个县区(图3)。5种重金属元素的输入通量在县区间的差异和Se的特征基本一致。

图3

图3   广西中东部9县区农田土壤Se及重金属灌溉水平均输入通量

Fig.3   The average irrigation flux of Se and heavy metals in 9 counties of the middle east of Guangxi


3.3 施肥年输入通量

肥料是植物的粮食,农作物的高产离不开肥料的施用,不论发达国家还是发展中国家,施肥都是粮食增产最有效的措施[42-43],但其在补充作物生长必需营养元素的同时,不可避免地会将一些有毒有害物质(如重金属)带入到土壤中[44-45],一旦这些有害物质积累到一定程度,势必会影响植物的营养生长和生殖生长,从而影响产品品质[46-47]。土壤中Se及重金属元素的累积都是漫长的过程,了解长期施肥对土壤和作物产品Se及重金属含量的影响,对肥料产品的安全生产和科学施用,合理利用富Se土壤,防止农产品污染,保证农产品安全和农业可持续发展都具有十分重要的意义。

研究区复合肥、氮肥、磷肥、钾肥、有机肥中Se及 As、Cd、Cr6+、Hg、Pb重金属元素含量统计结果见表3。肥料在带入Se的同时,也造成了重金属的积累。5种主要肥料中磷肥的Se及 As、Cd、Cr6+、Hg、Pb含量明显最高,其次为有机肥。磷肥的主要原料是磷矿石,磷矿石加工过程中会有部分重金属随原料进入磷肥[48-49]。欧洲12个国家196 种磷肥重金属平均质量分数为:w(Ni)=14.8×10-6w(Cd)=7.4×10-6w(Zn)=166×10-6w(Pb)=2.9×10-6w(As) =7.6×10-6w(Cr)=89.5 ×10-6,进入土壤的量和含磷水平紧密相关[50]。大量研究表明,施用有机肥影响作物体内重金属含量。有机肥对作物可食部位重金属含量的影响,与有机肥种类、用量、土壤类型和pH以及作物种类等有很大关系[51-53]。氮肥和钾肥对土壤重金属累积的影响不大,主要是因为氮、钾肥含有的重金属较少[54]

表3   广西中东部9县区肥料中Se及重金属元素含量平均值10-6

Table 3  Average contents of Se and heavy metals in fertilizers in the study area10-6

肥料种类样品数SeAsCdCr6+HgPb
复合肥1250.1316.030.4613.430.073.90
氮肥350.025.230.021.950.010.60
磷肥101.5988.831.06111.130.51151.24
钾肥260.040.800.011.410.010.75
有机肥120.675.420.6019.210.149.87

新窗口打开| 下载CSV


因为各种肥料的元素含量差异较大,且年施用量各不相同,所以不能把不同种类肥料的元素含量简单相加。本文采用的方法是,根据不同种类肥料年使用量,分别计算各种肥料的输入量,然后相加。肥料输入通量(F) 公式计算为:

F=i=1nCiMi/1000000,

式中,F 为某点位的年输入通量(g/hm2·a), i={复合肥,氮肥,磷肥,钾肥,有机肥},Ci为某元素在肥料i中的含量(10-6), Mi为某点位肥料i的年施用量(g/(hm2·a) )。

根据不同种类肥料的施肥量计算出研究区各地肥料中Se及 As、Cd、Cr6+、Hg、Pb的年输入通量(图4) 。Se的施肥平均输入通量为0.15 g/(hm2·a),输入通量呈现较为明显的地区差异,兴业、港南、临桂地区肥料中Se的年输入量普遍较高(平均通量为0.22~0.50 g/(hm2·a))。As、Cd、Cr6+、Hg、Pb的年输入通量也表现出明显的地区差异,兴业、港南、鹿寨、临桂地区肥料中重金属总量输入通量较高(平均通量为20.47~75.87 g/(hm2·a)),这取决于肥料中元素的含量以及施肥量。Se的输入通量地区差异与5种重金属元素总和的变化趋势基本一致。

图4

图4   广西中东部9县区农田土壤Se及重金属施肥平均输入通量

Fig.4   The average fertilization flux of Se and heavy metals in 9 counties of the middle east of Guangxi


3.4 年输入总量

研究区土壤中 Se 的外源输入总量(IP)由 3 种途径的通量相加而得,即:

IP=D+I+F

研究区不同地区Se输入通量存在明显差异(图5),9个县区按通量大小可分为 3 组,临桂区、鹿寨县的输入通量最高(>16.70 g/(hm2·a)); 博白县、 北流市、兴宾区输入通量大小分布在平均值(9.11 g/(hm2·a))附近;兴业县、港南区、平南县、象州县输入通量低于平均值。综合分析本文的3种输入途径,研究区大气干湿沉降、灌溉水和施肥对农田土壤Se的贡献率分别为70.93%、27.35%和1.72%,Se的主要来源是大气干湿沉降,大部分地区的大气干湿沉降输入比例在50%以上,灌溉水的输入量次之,而施肥所占输入比例最小(图6)。因此Se输入总量的地区差异也主要是由大气干湿沉降的差异所致,经济和工业更发达的临桂区、鹿寨县Se输入总量高于轻工业为主的桂东经济区,这与重金属元素输入通量特征一致(大气干湿沉降、灌溉水和施肥3种输入途径对5种重金属输入通量总和的贡献率分别为74.21%、15.67%、10.12%),反映了研究区冶金、机械、 化工等各项活动与大气中Se和As、Cd、Cr6+、Hg、Pb重金属元素增加有关。5种重金属元素,除As是灌溉水输入通量占主导地位,其他元素都是大气干湿沉降的输入通量占主要比例,这也和Se一致(图7)。前人对江西鄱阳湖流域、黑龙江松嫩平原以及四川绵阳的农田土壤Se的地球化学循环进行了详细研究[17-19],本研究区Se输入通量与这些地区进行比较,大气干湿沉降是所有地区的主要输入途径。

图5

图5   广西中东部9县区农田土壤Se及重金属平均输入通量

Fig.5   The average input flux of Se and heavy metals in 9 counties of the middle east of Guangxi


图6

图6   广西中东部9县区农田土壤Se的3外源输入通量比例关系

Fig.6   Contributions of different input types to total inputs of Se in 9 counties of the middle east of Guangxi


图7

图7   Se及重金属元素3外源输入通量比例关系

Fig.7   Contributions of different input types to total inputs of Se and heavy metals


4 结论

通过对广西中东部9县区三种外源输入途径的分析、计算,得出如下结论:

1) 研究区农田土壤Se的主要输入途径有大气干湿沉降、灌溉水和施肥,其中大气干湿沉降为主要输入途径,三者对土壤Se的贡献比例为70.93%、27.35%和1.72%。

2) 研究区农田土壤As、Cd、Cr6+、Hg、Pb重金属元素主要污染来源为大气干湿沉降。大气干湿沉降、灌溉水和施肥对5种重金属输入通量总和的贡献率分别为74.21%、15.67%、10.12%,因此本研究区的大气环境质量监控应是今后控制农田土壤重金属元素污染的工作重点。

3) 研究区Se输入通量地区差异及不同输入途径所占比例与进入农田土壤的As、Cd、Cr6+、Hg、Pb这5种重金属元素总量表现基本一致,说明外源输入在带入有益元素Se的同时也带入了一定量的重金属元素,因此要严格预防和控制外源输入造成的土壤重金属污染。

参考文献

Navarro Alarcón M, López Martínez M C.

Essentiality of selenium in the human body: relationship with different diseases

[J]. Science of the Total Environment, 2000,249(1/3):347-371.

[本文引用: 1]

Keshavarzi B, Moore F, Najmeddin A, et al.

The role of selenium and selected trace elements in the etiology of esophageal cancer in high risk Golestan province of Iran

[J]. Science of the Total Environment, 2012,433:89-97.

DOI:10.1016/j.scitotenv.2012.04.033      URL     PMID:22771466      [本文引用: 1]

Selenium (Se) deficiency is reported by some authors to be an important factor in the etiology of esophageal cancer (EC) in the Golestan province of Iran. In order to further investigate the role of Se and selected trace elements in the occurrence of EC disease, 663 samples including 206 cultivated soils, 247 sediments, 45 loess deposits and 165 grain samples from 45 villages in the Golestan province of Iran were collected and analyzed. Villages in the study area were classified into 2 groups according to the EC incidence in the local population. The results of this study demonstrate that, contrary to the expected trend, total Se concentrations in soil, grain, sediment, and loess samples increase from the low to the high EC areas suggesting that Se deficiency does not play a major role in the etiology of EC. On the other hand, antimony (Sb), and strontium (Sr) content in soil, grain, loess, and sediment samples is much higher in the high esophageal cancer area, which may be a significant factor. Total zinc (Zn) concentrations in soil, grain, loess, and sediment samples decrease from the low to the high cancer areas. Therefore, Zn deficiency may be a significant factor in EC incidence rate in the Golestan province.

魏显有, 刘云惠, 王秀敏, .

土壤中硒的形态分布及有效态研究

[J]. 河北农业大学学报, 1999,22(1):20-23.

[本文引用: 1]

Wei X Y, Liu Y H, Wang X M, et al.

Study on the form distribution of seleniumin soils and its available states

[J]. Journal of Agricultural University of Hebei, 1999,22(1):20-23.

[本文引用: 1]

朱建明, 尹祚莹, 凌宏文, .

渔塘坝微景观中硒的高硒成因探讨

[J]. 地球与环境, 2007,35(2):117-122.

Zhu J M, Yin Z Y, Ling H W, et al.

Investigation on the origin of selenium accumulation in Yutang baland scape environment

[J]. Earth and Environment, 2007,35(2):117-122.

Malisa E P.

The behaviour of selenium in geological processes

[J]. Environmental Geochemistry and Health, 2001,23(2):137-158.

Zhu J M, Wang N, Li S H, et al.

Distribution and transport of selenium in Yutangba,China: Impact of human activities

[J]. Science of the Total Environment, 2008,392(2-3):252-261.

DOI:10.1016/j.scitotenv.2007.12.019      URL     PMID:18215743     

Yutangba, one of the typical high-Se areas where a sudden incidence of Se poisoning occurred in 1963, is located in the northern part of Shuanghe town about 81 km SE of Enshi, Hubei Province, China. In this area, a comprehensive investigation was conducted on the distribution of Se in soils, plant species, stream water and sediment. The mean concentrations of Se were: total soil, 4.75+/-7.43 mg/kg (n=150); Corn seeds, 1.48+/-1.41 mg/kg (n=20); Agry wormwood, 1.68+/-1.27 mg/kg (n=30); Bracken fern, 0.63+/-1.61 mg/kg (n=57), and Central China dryoathyrium, 0.48+/-0.72 mg/kg (n=39); Stream water, 58.4+/-16.8 microg/L (n=12); stream sediment, 26.6+/-26.8 mg/kg (n=11). The spatial distribution of Se in soils and plants is significantly uneven and higher Se samples mainly distributed in the croplands and northwest Yutangba, while almost all the lower Se samples are located in undisturbed areas. 11 samples contained extremely high concentrations of Se, ranging from 346 to 2018 mg/kg with an average of 899+/-548 mg/kg, were found at croplands and discarded coal spoils in Yutangba. The distribution of Se in Yutangba is related to the pathways of Se transport, which was caused by human activities such as stone coal conveyance by local villagers, mining of stone coal for use as a fuel or fertilizer, and discharging lime into cropland to improve soil. These activities caused variable addition of Se to the soil and further accumulation of Se in food chain. Therefore, human activities have played an important role in the distribution, transport, and bioavailability of Se. Yutangba is still a high risk area where Se poisoning may occur again, and so are almost all high-Se areas in Enshi Prefecture.

Lim T T, Goh K H.

Selenium extractability from a contaminated fine soil fraction: Implication on soil cleanup

[J]. Chemosphere, 2005,58(1):91-101.

[本文引用: 1]

崔剑波.

生态环境中的生命元素Se与健康的研究

[J]. 生态学进展, 1989,6(4):243-251.

[本文引用: 1]

Cui J B.

Study on selenium and health in ecological environment

[J]. Ecology Progress, 1989,6(4):243-251.

[本文引用: 1]

张丽珊, 朱岩, 可夫, .

东北大骨节病区主要土壤腐殖酸Se与大骨节病关系的研究

[J]. 应用生态学报, 1990,1(4):333-337.

[本文引用: 1]

Zhang L S, Zhu Y, Ke F, et al.

Study on the relationship between selenium and Kashin Beck disease

[J]. Journal of Applied Ecology, 1990,1(4):333-337.

[本文引用: 1]

布和敖斯尔.

土壤硒区域环境分异及安全阈值的研究

[J]. 土壤学报, 1995,32(2):186-193.

[本文引用: 1]

Buheaosier .

Study on regional environmental differentiation and safety threshold of soil selenium

[J]. Acta Pedologica Sinica, 1995,32(2):186-193.

[本文引用: 1]

中国环境监测总站. 中国土壤元素背景值[M]. 北京: 中国环境科学出版社, 1990,68-92.

[本文引用: 1]

China National Environmental Monitoring Centre. Background values of soil elements in China[M]. Beijing: China Environmental Science Press, 1990: 68-92.

[本文引用: 1]

邓萍.

广西几多“硒”再摸“富”家底——我区对“长寿元素”硒开展再调查纪事

[N]. 广西日报, 2014-01-15.

[本文引用: 1]

Deng P.

How many "selenium" in Guangxi to touch "rich" family background

[N]. Guangxi daily, 2014-01-15.

[本文引用: 2]

黄碧燕, 李小夏, 廖勇.

广西农产品产地土壤硒资源普查及分级评价研究

[J]. 广西农学报, 2018,33(2):19-29.

[本文引用: 2]

Huang B Y, Li X X, Liao Y.

Investigation on soil selenium resources census in producing area of Guangxi agricultural products and graded evaluation

[J]. Journal of Guangxi Agriculture, 2018,33(2):19-29.

[本文引用: 2]

仝双梅, 连国奇, 秦趣.

贵州省富硒资源开发利用对策研究

[J]. 湖北农业科学, 2013,52(24):6024.

Tong S M, Lian G Q, Qin Q.

Study on the development and utilization of selenium rich resources in Guizhou Province

[J]. Hubei Agricultural Sciences, 2013,52(24):6024.

邢润华, 贾十军.

安徽省××地区富硒土壤地球化学评价

[J]. 安徽地质, 2008,18(3):202-206.

[本文引用: 1]

Xing R H, Jia S J.

Geochemical evaluation of selenium-rich soil in an area of Anhui province

[J]. Geology of Anhui, 2008,18(3):202-206.

[本文引用: 1]

徐恒振, 姚子伟, 马永安, .

黄、东海污染物越界通量的估算研究

[J]. 交通环保, 2001,22(3):8-11.

[本文引用: 1]

Xu H Z, Yao Z W, Ma Y A, et al.

Study on estimation of fluxes of pollutants between Yellow sea and East sea

[J]. Environmental protection in Transportation, 2001,22(3):8-11.

[本文引用: 1]

魏然, 杨忠芳, 侯青叶, .

江西省鄱阳湖流域农田生态系统土壤Se元素含量变化研究

[J]. 地学前缘, 2012,19(1):277-284.

[本文引用: 2]

Wei R, Yang Z F, Hou Q Y, et al.

The changes of selenium element content in soils of the agroecosystem in Poyang Lake Basin, Jiangxi province

[J]. Earth Science Frontiers, 2012,19(1):277-284.

[本文引用: 2]

夏学齐, 杨忠芳, 薛圆, .

黑龙江省松嫩平原南部土壤硒元素循环特征

[J]. 现代地质, 2012,26(5):850-864.

URL    

硒(Se)是生态环境中重要的微量元素,其丰缺与人和动植物健康有着密切关系。选择黑龙江省松嫩平原南部,在多目标区域地球化学调查获取的Se元素数据基础上,采集大气干湿沉降、灌溉水、化肥等土壤硒输入端元,以及植物收割、下渗水等输出端元样品,计算土壤Se输入输出通量,研究土壤硒循环特征,并预测土壤Se未来发展趋势。结果发现:研究区总体上为土壤低Se区,Se不足和潜在Se不足面积占总面积的35.0%;土壤Se的主要输入途径为大气干湿沉降,可达总输入量的70%~90%,主要输出途径为土壤下渗水,约占总输出量的73%;研究区土壤Se为净积累状态,预测表明20年后土壤Se不足和潜在Se不足面积将从目前的35.0%下降到31.%。

Xia X Q, Yang Z F, Xue Y.

Geochemical circling of soil selenium on the southern Song-Nen plain,Heilongjiang province

[J]. Geoscience, 2012,26(5):850-864.

URL    

Selenium is an important trace element in the eco-environment in the aspect of the human, plant and animal health. In this paper, circling of the soil Se was studied by sampling the input endmembers of soil Se, such as atmospheric deposition, irrigation water and chemical fertilizer, as well as the output endmembers such as the harvested plant parts and soil seepage water, as the further study based on the multi purpose geochemical survey (MPGS). The input and output fluxes of the endmembers were calculated and the accumulation rate of soil Se was predicted. Three aspects were found as the following:  in general, the study area has a low soil Se level with the area of soil Se deficiency and potential deficiency covering 35.20% of the whole area; the maximum soil Se input comes from the wet and dry atmospheric deposition, and the maximum soil Se output endmember is the soil seepage water; soil Se in the study area shows a state of net accumulation, and the area of Se deficiency and potential deficiency will decrease from 35.20% to 31.7% in 20 years.

Tao Yu, Zhongfang Yang, Yaoyao Lv, et al.

The origin and geochemical cycle of soil selenium in a Se-rich area of China

[J]. Journal of Geochemical Exploration, 2014,139:97-108.

DOI:10.1016/j.gexplo.2013.09.006      URL     [本文引用: 2]

Mianyang City, located in the Fujiang River Basin, Sichuan Province, is a Se-rich area of China. The distribution of Selenium (Se) in the Mianyang area was studied based on assay data obtained from soil, irrigation water, fertilizer, and rice (grain and stem) samples. The ratio between natural and anthropogenic sources in the area was derived by analyzing the concentrations and spatial distributions of multiple elements (such as Se,, cadmium, arsenic, and mercury) in the soil. The controlling factors affecting Se concentration in the soil were also investigated. We established a geochemical model of the Se cycle among the different media (i.e., the atmosphere, water, soils, and plants). We then calculated the annual Se flux caused by various inputs' (such as precipitation, fertilization, and irrigation) and outputs' (such as infiltration, crop harvest, removal of straws from cropland, and volatilization) pathways in the topsoil. We discuss the contribution of different pathways to the Se cycle and provide evidence for exploring Se-rich land in the study area. (C) 2013 Elsevier B.V.

刘永贤, 阳继辉, 石玫莉, .

广西富硒功能农产品开发前景分析

[J]. 农业与技术, 2015,35(1):176-178.

[本文引用: 1]

Liu Y X, Yang J H, Shi M L, et al.

Analysis on the development prospect of selenium rich functional agricultural products in Guangxi

[J]. Agriculture and Technology , 2015,35(1):176-178.

[本文引用: 1]

赵子宁, 卢小霞, 陶记增, .

广西北流地区土壤硒地球化学特征及其富集来源浅析

[J]. 矿产勘查, 2018,9(1):176-182.

[本文引用: 1]

Zhao Z N, Lu X X, Tao J Z, et al.

Geochemical characteristics of selenium in the soil and analysis on its material source of selenium concentration in Beiliu area,Guangxi

[J]. Mineral Exploration, 2018,9(1):176-182.

[本文引用: 1]

李兆谊, 罗映林, 赵喜林, .

桂东南地区兴业县富Se土壤地球化学特征及来源浅析

[J]. 南方农业, 2018,12(20):189-191.

Li Z Y, Luo Y L, Zhao X L, et al.

Geochemical characteristics and sources of selenium rich soils in Xingye county, southeast Guangxi

[J]. South China Agriculture, 2018,12(20):189-191.

覃勇新, 陈彪.

广西贵港地区富硒土壤地球化学特征及成因探讨

[J]. 南方国土资源, 2013,8:36-41.

[本文引用: 1]

Tan Y X, Chen B.

Geochemical characteristics and genesis of selenium rich soils in Guigang area, Guangxi province

[J]. Land and Resources of Southern China, 2013,8:36-41.

[本文引用: 1]

杨志强, 李杰, 郑国东, .

广西北部湾沿海经济区富硒土壤地球化学特征

[J]. 物探与化探, 2014,38(6):1260-1264,1269.

[本文引用: 1]

Yang Z Q, Li J, Zheng G D, et al.

Geochemical characteristics of selenium-rich soil in Beibu Gulf coastal economic zone of Guangxi

[J]. Geophysical and Geochemical Exploration, 2014,38(6):1260-1264,1269.

[本文引用: 1]

黄子龙, 林清梅, 范汝海.

广西全州县富硒土壤地球化学特征

[J]. 物探与化探, 2018,42(2):381-385.

[本文引用: 1]

Huang Z L, Lin Q M, Fan R H.

Geochemical characteristics of selenium-rich soil in Quanzhou county of Guangxi

[J]. Geophysical and Geochemical Exploration, 2018,42(2):381-385.

[本文引用: 1]

杨琼, 侯青叶, 顾秋蓓, .

广西武鸣县典型土壤剖面Se 的地球化学特征及其影响因素研究

[J]. 现代地质, 2016,30(2):455-462.

[本文引用: 1]

Yang Q, Hou Q Y, Gu Q B.

Study of geochemical characteristics and influencing factors of soil selenium in the typical soil profiles in Wuming county of Guangxi

[J]. Geoscience, 2016,30(2):455-462.

[本文引用: 1]

李兆谊, 韦文胜, 王磊, .

桂中北岩溶山区土壤硒地球化学特征及影响因素浅析——以广西柳城县土地质量地球化学评价研究区为例

[J]. 吉林农业, 2018,14:82-84.

[本文引用: 2]

Li Z Y, Wei W S, Wang L, et al.

Analysis on the characteristics and influencing factors of soil selenium geochemistry in the karst mountain area in the middle and north of Guangxi, taking the study area of land quality geochemical evaluation in Liucheng county, Guangxi province as an example

[J]. Jilin Aagriculture, 2018,14:82-84.

[本文引用: 2]

吴含志, 陈彪, 郑国东, .

横县岩溶区土壤硒地球化学特征及影响因素探讨

[J]. 南方国土资源, 2016,9:30-33.

[本文引用: 2]

Wu H Z, Chen B, Zhen G D, et al.

Geochemical characteristics of soil selenium and its influencing factors in karst area of Hengxian county

[J]. Land and Resources of Southern China, 2016,9:30-33.

[本文引用: 2]

严明书, 龚媛媛, 杨乐超, .

重庆土壤硒的地球化学特征及经济意义

[J]. 物探与化探, 2014,38(2):325-330.

[本文引用: 1]

Yan M S, Gong Y Y, Yang L C, et al.

Geochemical characteristics and economic significance of the selenium -rich in Chongqing

[J]. Geophysical and Geochemical Exploration, 2014,38(2):325-330.

[本文引用: 1]

魏振山, 涂其君, 唐蜀虹, .

天山北坡乌鲁木齐至沙湾地区富硒土壤地球化学特征及成员探讨

[J]. 物探与化探, 2016,40(5):893-898.

[本文引用: 1]

Wei Z S, Tu Q J, Tan S H, et al.

A discussion on the geochemical features and origin of selenium-rich soil on the northern slope of the Tianshan Mountains from Urumqi to Shawan county

[J]. Geophysical and Geochemical Exploration, 2016,40(5):893-898.

[本文引用: 1]

徐文, 唐文浩, 邝春兰, .

海南省土壤中硒含量及影响因素分析

[J]. 安徽农业科学, 2010,38(6):3026-3027.

[本文引用: 1]

Xu W, Tang W H, Kuang C L, et al.

Analysis on content of selenium in soil of Hainan province and its influencing factors

[J]. Journal of Anhui Agricultural Sciences, 2010,38(6):3026-3027.

[本文引用: 1]

石建凡, 林清, 吴鹏盛, .

土壤中微量元素硒含量的影响因素分析

[J]. 科技创新与应用, 2010,5(26):175.

[本文引用: 1]

Shi J F, Lin Q, Wu P S, et al.

Analysis of the factors influencing the content of selenium in soil

[J]. Technology Innovation and Application, 2015(26):175.

[本文引用: 1]

窦均林, 王若晨, 赵可战.

桂柳工业走廊价值:基于“工业兴桂”战略的价值分析

[J]. 桂林航天工业高等专科学校学报, 2007(1):60-63.

[本文引用: 1]

Dou J L, Wang R C, Zhao K Z.

The value of Guilin Liuzhou industrial corridor: Based on the value analysis of the strategy of "Prospering Guangxi by industry"

[J]. Journal of Guilin College of Aerospace Technology, 2007(1):60-63.

[本文引用: 1]

中华人民共和国国土资源部.

DZ/T0289-2015 区域地球化学评价规范

[S]. 北京: 中华人民共和国国土资源部, 2015.

[本文引用: 1]

Ministry of Land and Resources of the People's Republic of China.

DZ/T0289-2015 Standard for regional geochemical evaluation

[S]. Beijing: Ministry of Land and Resources of the People's Republic of China, 2015.

[本文引用: 1]

中华人民共和国国土资源部.

DZ/T0295-2016 土地质量地球化学评价规范

[S]. 北京: 中华人民共和国国土资源部, 2016.

[本文引用: 1]

Ministry of Land and Resources of the People's Republic of China.

DZ/T0295-2016 Standard for geochemical evaluation of land quality

[S]. Beijing: Ministry of Land and Resources of the People's Republic of China, 2016.

[本文引用: 1]

中国地质调查局.

DD2005-03 生态地球化学评价样品分析技术要求(试行)

[S]. 北京:中国地质调查局, 2005.

[本文引用: 1]

China Geological Survey.

DD2005-03 Technical requirements for analysis of eco geochemical evaluation samples (Trial)

[S]. Beijing: China Geological Survey, 2005.

[本文引用: 1]

王圣瑞, 颜昌宙, 金相灿, .

关于化肥是污染物的误解

[J]. 土壤通报, 2005,36(5):799-801.

[本文引用: 1]

Wang S R, Yan C Z, Jin X C, et al.

Misunderstanding that chemical fertilizer is a pollutant

[J]. Chinese Journal of Soil Science, 2005,36(5):799-801.

[本文引用: 1]

史贵涛, 陈振楼, 李海雯, .

城市土壤重金属污染研究现状与趋势

[J]. 环境监测管理与技术, 2006,18(6):9-13.

[本文引用: 1]

Shi G T, Chen Z L, Li H W, et al.

Situation and trend of heavy metal contamination in urban soil

[J]. The Administration and Technique of Environmental Monitoring , 2006,18(6):9-13.

[本文引用: 1]

Meharg A A.

Arsenic in rice-understanding a new disaster for south-east Asia

[J]. Trends in Plant Science, 2004,9(9):415-417.

DOI:10.1016/j.tplants.2004.07.002      URL     PMID:15337490      [本文引用: 1]

Pacyna J M, Pacyna E G.

An assessment of global and regional emissions of tracemetals to the atmosphere from anthropogenic sources worldwide

[J]. Environmental Reviews, 2001,9(4):269-298.

[本文引用: 1]

Wang Z J, Gao Y X.

Biogeochemical cycling of selenium in Chinese environments

[J]. Applied Geochemistry, 2001,16:1345-1351.

[本文引用: 1]

宋志伟. 土壤肥料[M]. 北京: 高等教育出版社, 2009:8-10.

[本文引用: 1]

Song Z W. Soil and fertilizer[M]. Beijing: Higher Education Press, 2009:8-10.

[本文引用: 1]

王激清, 马文奇, 江荣风, .

我国肥料利用率的现状及调控措施

[C]// 首届全国测土配方施肥技术研讨会论文集, 北京: 中国农业大学出版社, 2006,137-142.

[本文引用: 1]

Wang J Q, Ma W Q, Jiang R F, et al.

The current situation and control measures of fertilizer utilization rate in China

[C]// Proceedings of the first national symposium on soil testing and formula fertilization technology, Beijing: China Agricultural University Press, 2006:137-142.

[本文引用: 1]

Soumaré M, Tack F M G, Verloo M G.

Effects of a municipal solid waste compost and mineral fertilization on plant growth in two tropical agricultural soils of Mali

[J]. Bioresour. Technol., 2003,86:15-20.

DOI:10.1016/s0960-8524(02)00133-5      URL     PMID:12421002      [本文引用: 1]

A pot experiment was conducted to compare the effects of compost and mineral fertilization on the growth and chemical composition of ryegrass (Lolium perenne L.) in two Malian agricultural soils (Baguineda, abbreviated as Bgda, 12 degrees 23' S, 7 degrees 45' W and Gao. 16 degrees 18' N, 0 degrees GM). Treatments included: control, NPK alone, NPK + C25, NPK + C50, NPK + C100, PK + C50, NK + C50, NP + C50, K + C50, P + C50, N + C50 and C50 alone, where NPK represents the non-modified Hoagland's solution (corresponding to 271, 95 and 172 kg/ha of N, P and K respectively) and C25, C50 and C100 the different rates (25, 50 and 100 T/ha) of compost. Compost and mineral fertilization significantly increased dry matter production. The application of 50 T/ha of compost alone increased the dry matter yield by 10% and 17.5% while mineral NPK alone, by 69.7% and 65% for Gao and Bgda soils, respectively. The combination of compost and mineral NPK (NPK + C25 for Gao and NPK + C50 for Bgda) showed the highest crop yields.

Uprety D, Hejcman M, Száková J, et al.

Concentration of trace elements in arable soil after long-term application of organic and inorganic fertilizers

[J]. Nutr.Cycl.Agroecosyst., 2009,85:241-252.

[本文引用: 1]

毕淑芹, 谢建治, 刘树庆, .

土壤重金属污染对植物产量及品质的影响研究

[J]. 河北农业科学, 2006,10(2):107-110.

[本文引用: 1]

Bi S Q, Xie J Z, Liu S Q, et al.

The review of effects of heavy metal pollution in soil on the plant

[J]. Journal of Hebei Agricultural Sciences, 2006,10(2):107-110.

[本文引用: 1]

李秀珍, 李彬.

重金属对植物生长发育及其品质的影响

[J]. 四川林业科技, 2008,29(4):59-65.

[本文引用: 1]

Li X Z, Li B.

Effect of heavy metals on growth, development and quality of plants

[J]. Journal of Sichuan Forestry Science and Technology, 2008,29(4):59-65.

[本文引用: 1]

马榕.

重视磷肥中重金属镉的危害

[J]. 磷肥与复肥, 2002,17(6):5-6.

[本文引用: 1]

Ma R.

Pay attention to the hazardous cadmium in phosphate fertilizer

[J]. Phosphate and Compound Fertilizer, 2002,17(6):5-6.

[本文引用: 1]

高阳骏, 张乃明.

施用磷肥对环境的影响探讨

[J]. 土壤肥料科学, 2003,19(6):162-165.

[本文引用: 1]

Gao Y J, Zhang N M.

Studying on the influence of phosphorus fertilizer on environment

[J]. Chinses Agricultural Science Bulletin, 2003,19(6):162-165.

[本文引用: 1]

Nziguheba G, Smlsers E.

Inputs of trace elements in agricultural soils via phosphate fertilizers in European countries

[J]. Science of the Total Environment, 2008,390(1):53-57.

DOI:10.1016/j.scitotenv.2007.09.031      URL     PMID:18028985      [本文引用: 1]

Mineral fertilizers are sources of diffuse metal enrichment of agricultural soils. A survey of phosphate fertilizers (blends or raw) sold on the European market was undertaken to quantify metal input via fertilizers in European agricultural soils. A total of 196 phosphate fertilizer samples from 12 European countries were analyzed for trace metals. Analytical quality was controlled with a certified rock phosphate sample. The average metal concentrations (mg kg(-1)) in the fertilizers were 14.8 (Ni), 7.4 (Cd), 166 (Zn), 2.9 (Pb), 7.6 (As), and 89.5 (Cr). The trace metal concentrations were positively correlated with the P concentrations confirming that the rock phosphate was the major source of these elements. Lowest metal concentrations were generally found in samples from Scandinavian countries. At average P use, the trace metal input via fertilizers was similar to or even larger than the metal input via atmospheric deposition in European agricultural soils for Cd, As, and Cr, whereas the reverse was true for Zn, Ni, and Pb. The input of Cd in European agricultural soils has decreased from previously estimated values and the soil Cd mass balance was close to steady state on an average basis.

王开峰, 彭娜, 王凯荣, .

长期施用有机肥对稻田土壤重属含量及其有效性的影响

[J]. 水土保持学报, 2008,22(1):105-108.

[本文引用: 1]

Wang K F, Peng N, Wang K R, et al.

Effects of long-term manure fertilization on heavy metal content and its availability in paddy soils

[J]. Journal of Soil and Water Conservation, 2008,22(1):105-108.

[本文引用: 1]

孔文杰, 倪吾钟.

有机无机肥配合施用对土壤—水稻系统重金属平衡和稻米重金属含量的影响

[J]. 中国水稻科学, 2006,20(5):517-523.

Kong W J, Ni W Z.

Effects of integrated fertilization with commercial organic manure and chemical fertilizers on heavy metal balance in soil-ricecropping system

[J]. Chinese Journal of Rice Science, 2006,20(5):517-523.

孔文杰.

有机无机肥配施对蔬菜轮作系统重金属污染和产品质量的影响

[J]. 植物营养与肥料学报, 2011,17(4):977-984.

[本文引用: 1]

Kong W J.

Effects of organic and inorganic fertilizer on heavy metal pollution and product quality in vegetable rotation system

[J]. Journal of Plant Nutrition and Fertilizer, 2011,17(4):977-984.

[本文引用: 1]

崔德杰, 张玉龙.

土壤重金属污染现状与修复技术研究进展

[J]. 土壤通报, 2004,35(3):366-370.

[本文引用: 1]

Cui D J, Zhang Y L.

Current situation of soil contamination by heavy metals and research advances on the remediation techniques

[J]. Chinese Journal of Soil Science, 2004,35(3):366-370.

[本文引用: 1]

/

京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com