E-mail Alert Rss
 

物探与化探, 2019, 43(1): 118-124 doi: 10.11720/wtyht.2019.1342

方法研究·信息处理·仪器研制

基于轮廓线三维矿体表面重建的一种改进算法

李兆亮1,2, 王林飞1,2, 熊盛青1,2, 罗锋1,2, 闫浩飞1,2, 朱自强1,2

1. 中国自然资源航空物探遥感中心,北京 100083

2. 自然资源部 航空地球物理与遥感地质重点实验室,北京 100083

An improved algorithm for surface reconstruction of 3D orebody based on contour line

LI Zhao-Liang1,2, WANG Lin-Fei1,2, XIONG Sheng-Qing1,2, LUO Feng1,2, YAN Hao-Fei1,2, ZHU Zi-Qiang1,2

1. China Aero Geophysivey & Remote Sensing Center for Natural & Resource, Beijing 100083, China;

2. Key laboratoray of Airborn Geophysics and Remote Sensing Geology, Ministry of Natural and Resource, Beijing 100083, China

责任编辑: 王萌

收稿日期: 2018-09-21   修回日期: 2018-11-17   网络出版日期: 2019-02-20

基金资助: 国家重点研发计划项目“综合航空地球物理数据处理、解释和管理软件平台研发”.  2017YFC0602204

Received: 2018-09-21   Revised: 2018-11-17   Online: 2019-02-20

作者简介 About authors

李兆亮(1983-),男,主要从事地球物理数据处理、综合解释及三维地质建模研究工作。Email:penson_lee@163.com

摘要

基于轮廓线的三维矿体表面建模方法是矿体建模的主流方法,但在实际应用中,传统的建模方法显现出了不足之处,笔者对该方法进行了针对性地改进。对于一组单轮廓线可自动添加矿体趋势线,并且还可以进行人工编辑修改,然后利用中间加密轮廓线的方法实现对矿体形态的控制。通过投影计算封闭轮廓线之间的最短距离自动添加分支点,利用平面的带洞限定三角剖分实现分支的自动构建,大大节省了人力资源,同时保证了分支矿体的准确性。针对初始构建的三维矿体表面模型几何质量差,引入了质量控制,实现了表面模型的重构,保证了模型质量和后续的计算。这些改进在实际的应用中取得了良好的效果。

关键词: 矿体表面建模 ; 矿体趋势 ; 分支矿体 ; 网格优化

Abstract

The 3D orebody surface modeling method based on contours is the main method of orebody modeling; nevertheless, in practical application, the traditional modeling method has shortcomings, which have been improved with the method in this paper. In general, contour lines of these methods are used to reconstruct the surface model by artificial selection of two contour lines, but it is difficult to grasp the overall trend of the orebody as a whole, and the shape of the three dimensional orebodies is relatively coarse. When researchers deal with the problem of branch, it is very tedious to add the branch point in that it takes a lot of manpower and time, and it is difficult to guarantee the correct result. The surface model of the orebody exhibits a lot of degenerated triangles, even in the situation that the surfaces of the orebodies are self-intersected or overlapped, hence the geometric quality of the model is so poor that it influences subsequent visualization and model calculation. The trend line for a group of contours is introduced, and it can also be edited. Then the encryption method for refining the intermediate contours so as to achieve the control of the orebody shape is used. Through projection, the shortest distance between closed contours is calculated, and branch points are automatically added. The constrained triangulation with holes is used to achieve the building of branch automatically, which greatly saves human resources and ensures the accuracy of branch of orebody. According to the problem of poor geometric quality of the initial 3D orebody surface model, the quality control to achieve the reconstruction of the surface model is introduced, which ensures the model quality and subsequent calculation. These improvements have achieved good results in practical application.

Keywords: orebody surface modeling ; trend of orebody ; branch orebody ; mesh optimization

PDF (2671KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

李兆亮, 王林飞, 熊盛青, 罗锋, 闫浩飞, 朱自强. 基于轮廓线三维矿体表面重建的一种改进算法. 物探与化探[J], 2019, 43(1): 118-124 doi:10.11720/wtyht.2019.1342

LI Zhao-Liang, WANG Lin-Fei, XIONG Sheng-Qing, LUO Feng, YAN Hao-Fei, ZHU Zi-Qiang. An improved algorithm for surface reconstruction of 3D orebody based on contour line. Geophysical and Geochemical Exploration[J], 2019, 43(1): 118-124 doi:10.11720/wtyht.2019.1342

0 引言

三维矿体模型在矿产勘探、储量评估、开采设计、生产过程管理等矿山开采过程中具有重要作用[1]。三维矿体表面建模是三维矿体建模的关键内容,其主要目的是确定矿体的三维边界,准确地描述矿体的三维空间位置及几何形态。目前可用于建立三维矿体表面模型的方法主要有基于剖面的轮廓线建模方法[1,2,3,4,5,6,7,8]、钻孔直接表面建模法[9]、断面构模法和多层DEM建模法[1]等。基于剖面的轮廓线构模法的基本思路是将相邻剖面上地质意义相同的矿体轮廓线依次连接形成不规则三角网(triangular irregular networks, TIN),以此来模拟矿体的三维边界。由于该方法能处理复杂矿体的空间形态,目前已成为三维矿体表面建模的主流方法,同时也是三维地质界面生成的重要方法[10,11]

利用轮廓线进行矿体表面建模与医学上利用CT或MRI断层切片构造三维人体表面有着一定的相似性,但是矿体表面建模却更加复杂,矿体轮廓线形态更加复杂且相似度低,且由于经济因素矿体轮廓线数据稀疏,矿体整体形态就更难以把握。传统的轮廓线连接算法主要解决对应(correspondence)、构网(tiling)、分支(branching)和光滑(surface-fitting)4个方面的问题[12,13]。对应问题指相邻剖面之间轮廓线的匹配问题;构网问题指轮廓线之间的构网问题;分支问题是指同一对象在不同剖面上组成部分的个数不同问题;光滑问题指如何来构建更加光滑的曲面,以解决初始生成的由三角面片表示的对象,往往存在大量的棱角而与实际对象不符的问题。

目前,基于轮廓线的三维表面建模算法研究已经取得一定的成果,包括最大体积法[14]、最小表面积法[15]、最短对角线法[16]、同步前进[17,18]、切开—缝合法[3]、周长投影方法[4]、Morphing法[19]等。这些方法主要解决了轮廓线构面的合理性问题,即当相邻轮廓线形态差异较大、点数相差较多,轮廓线构面容易出现三角形交叉、矿体扭曲错位连接等问题,影响建模的准确性。由于轮廓线建模法基本可以适应各种复杂矿体的三维形态表达,并且可以通过修改轮廓线、加密轮廓线、添加示踪线(人工指定控制线)等手段更精确地表达矿体。这些方法将人机交互融入到建模过程中,在客观上基本保证了建模的精度以及对各类复杂情况(如矿体扭曲、矿体分支)的适应。此外,何金国等[20]提出一种新的轮廓线分段匹配算法,然后利用空间多边形三角剖分,解决分支问题;该方法对于密度较大的轮廓线,如医学CT,利用效果较好,但对于复杂矿体则不适应。杨洋等[21]提出一种带有质量控制的轮廓线表面建模方法,但是该方法无法解决差异较大的轮廓线面网的质量,而且算法主要采用细分的方法,数据产生的冗余度较高。总体上,这些方法的轮廓线拼接通过人工选择两两轮廓线重建表面模型,但是难以从整体上把握矿体的整体趋势,三维矿体的形态也比较粗糙;在处理分支问题时,主要通过人工交互添加分支点,非常繁琐,耗费了大量人力和时间,并且难以保证结果;矿体表面模型出现大量的退化三角形,甚至矿体表面三角形相交或者重叠,模型的几何质量比较差,模型精度低,影响后续的可视化和模型计算。

笔者对于一组单轮廓线自动添加矿体趋势线,并且还可以进行人工编辑修改,然后利用中间加密轮廓线的方法实现对矿体形态的控制。通过投影计算封闭轮廓线之间的最短距离自动添加分支点,利用平面的带洞限定三角剖分实现分支的自动构建,大大节省了人力资源,同时保证了分支矿体的准确性。针对初始构建的三维矿体表面模型几何质量差,引入了质量控制,实现了表面模型的重构,保证了模型质量和后续的计算。

1 矿体趋势

多个矿体轮廓线可以反映出矿体的走向趋势,因此笔者引入矿体趋势线,即曲线拟合和矿体特征点匹配,利用插值方法加密轮廓线,以达到对矿体趋势的拟合。具体步骤:

1) 人工选择能够反映矿体趋势的一组轮廓线(图1a)。

2) 为了方便表述假设每条轮廓线上的所有点均在一个平面上,并且这些平面相互平行。计算出选定的轮廓线形的重心,利用插值算法,将得到的重心点连接起来,形成光滑的轨迹线;该轨迹线还可以通过人工编辑进行修改(图1b)。

3) 对需要加密的区域进行加密处理,生成新的轮廓线, 新生成的轮廓线重心要位于轨迹线相应的位置上,同时还可以对新生成的剖面进行三维空间的可视化编辑,包括平移、缩放、旋转等各种几何变换,使之满足对矿体形态的控制需求(图1b)。

4) 提取相邻轮廓线的相似点进行匹配,然后实现两相邻轮廓线间的三角网构建。笔者通过矿体形态控制点的提取和匹配算法,将控制矿体形态的关键点对应起来,然后利用Morphing法[16]来形成矿体之间的对应,避免矿体扭曲(图1d)。

图1

图1   加入趋势线的轮廓线表面生成方法

a—原始4条剖面轮廓线,所在剖面近似平行;b—自动添加趋势线和中间过渡轮廓线;c—未添加趋势线的表面模型;d—添加曲线线后的表面模型

Fig.1   The method of surface generation form contours with the trend line

a— the original four profiles are approximately parallel; b— automatically adding trend lines and intermediate transition contours; c— surface model without trend lines; d— surface model with trend lines


通过简单的实例(图1),可以看出利用4条轮廓线连接矿体的效果,通过添加矿体趋势线更能反映矿体的整体形态,避免了矿体的简单分段线性造成的模型粗糙(图1c与图1d)。

2 分支问题

分支问题是指同一对象在不同剖面上的组成部分的个数不同的问题。分支问题一直是三维矿体表面建模的瓶颈与难点。传统轮廓线连接算法对分支情况多采用手工添加辅助点或中间层[1,16]的方法,并且文献[18,20]中无法预测分支点位置,也无法解决轮廓线稀疏情况下的分支问题。笔者提出了一种自动添加分支点,然后利用带洞的限定三角形剖分算法自动实现一对多、多对多的矿体分支构建。该方法避免了复杂交互,能够自动快速地实现多分支矿体表面模型的自动构建。

闭曲线簇{C( Pi*):i=1,…,n},这些闭曲线满足基本上在一个平面上A,闭曲线簇{C( Qj*):j=1,…,m},这些闭曲线满足基本上在一个平面上B,两个平面近似平行。为表述方便,现假设平面A与平面B平行。分支矿体建模的问题可以抽象成A与B两平面上闭曲线的对应及成面问题。具体计算步骤如下:

1) 令计算闭曲线簇{C( Pi*):i=1,…,n}所在平面或者最小二乘的平面方程α:Ax+By+Cz+dα=0;闭曲线组{C( Qj*):j=1,…,m}所在平面或者最小二乘的平面方程β:Ax+By+Cz+dβ=0。

2) 将曲线簇{C( Pi*):i=1,…,n}投影在平面α上,并且求取所有点的凸包,并进一步求取较优的紧致边界Cα,然后将外扩一定的范围变为 Cα*,使曲线得闭曲线簇{C( Pi*):i=1,…,n}中的每一条曲线均在 Cα*内。

3) 计算Hausdorff距离,即在两个轮廓线之间最短距离处添加分支点,使得每个分支点均在闭曲线簇{C( Pi*):i=1,…,n}中每条闭曲线之外,且在闭曲线 Cα*的内部。

4) 利用限定三角剖分算法实现带洞的限定三角剖分[19],然后通过边交换,实现每条内边(即非边界的边)的两个端点不属于同一条轮廓线。

5) 将Cα上替换掉步骤(4)中产生的三角网的外边界上相应的点,并将其移到A、B平面中间且距离A面的一定距离处(图2c);该距离可以人为设置。

6) 针对闭曲线簇{C( Qj*):j=1,…,m}重复(2)~(5)步骤,其结果如图2c。

7) 利用同步前进方法实现闭曲线Cα与闭曲线Cβ的连接,如图2d。

8) 合并所产生的三部分三角网便形成分支矿体表面模型(图2d)。如有必要可以对分支矿体表面进行质量控制。

图2

图2   分支矿体表面模型的建立过程

a—原始数据为两簇闭曲线集合,每组曲线近似位于一个平面上;b—每簇曲线在所在平面上,添加分支节点和外扩的外包并实现带洞三角剖分和边交换;c—将外扩的外包回复到三维状态;d—利用同步前进方法实现两闭曲线的连接,实现分支模型的建立

Fig.2   The establishment process of the surface model of the branch orebody

a— two clusters of closed curves are the original data, each set of curves approximately located in a plane; b— on the plane of each cluster of curves, add branch points and enlarged convex hull, achieve triangulation with holes and exchange edges; c— the outspread outsourcing back to the three-dimensional state; d— using synchronous forward method to achieve the connection of the two closed curves, the branch model is established


3 矿体表面模型重构

曲面网格的质量直接影响到数值计算等应用的精确度、数值的稳定性和正确性[11,18,22-25],而在矿体建模过程中网格质量变差已影响到矿体表面模型的可视化、体素化及储量计算等后续工作,所以要对矿体表面模型的网格质量进行控制。三维矿体表面模型的表达采用不规则三角网(图3),因为它可以根据表面形态的复杂程度自适应地来控制三角面片的大小和数量,比如曲率大的地方可以利用小三角形来逼近,曲率小的地方利用大三角形。这样能有效地消除所产生的数据冗余,同时还保持较高的拟合精度[11,18,23,25]

图3

图3   三角形的外接圆与内接圆示意

Fig.3   Schematic diagram of the circumcircle and inscribed circle of the triangle


笔者对矿体表面模型的质量控制主要是对矿体表面模型进行重构,是在控制点线等控制条件下实现对三角网分辨率和三角网美化程度等几何方面的质量控制[28,23-26],实现矿体形态的光滑和几何模型的美观,并保持矿体模型的准确性。重构的方法措施主要包括矿体表面模型的分辨率控制和面网质量的优化。

首先引入三角面网质量的评价指标:元素大小和美化程度,然后利用面网优化技术,控制矿体表面形态和矿体表面模型的分辨率。三角形的大小一般由面积和外接圆半径来度量;三角形的质量是由内接圆半径和其外接圆半径的比值来确定。2002,Mallet定义了对于三角形的美化度的函数[18]:

b(T)=r(T)R(T),

其中:r(T)为三角形T的内切圆的半径,其中R(T)为三角形T的外接圆的半径[23],并且b(T)∈ 0,12;当b(T)= 12时,三角形T是等边三角形,三角形的形状最好;当b(T)越接近0,三角形的质量越差,其形状越扁平或者狭长。为了评价整个面网T(S)的美化程度,可以定义全局美化度函数B(T(S)):

B(T(S))=TT(S)b(T)0,12·|T(S)|,

其中:|T(S)|为三角面网S的三角形的个数[18,24]

降低一个三角网的分辨率的操作就是要移除包含冗余信息的节点,这些操作是基于节点瓦解操作(图4a)或者边瓦解操作(图4b)[11,25-26]。增加表面的分辨率主要是网格加密操作(图4c)[25,26]。网格的质量控制的方法可分为两种,其一是保持网格点位置不变,修改网格拓扑,求得网格质量改进(图5);其二是保持网格拓扑不变,移动网格点的位置,以期获得网格质量改进(图6)。同时配合使用上文提到的对网格的边瓦解和点瓦解以及细分加密技术,从而达到网格质量的优化的目的(图7)。

图4

图4   三角网的局部操作[22]

Fig.4   local operations modifying the resolution of a triangulated surface[22]

a—the edge collapse; b—the node collapse operations; c— refines the mesh


图5

图5   交换边实现面网优化的示意

Fig.5   Swap the common edge of two adjacent triangles


图6

图6   点移动的示意

Fig.6   Schematic diagram of point moving operation


图7

图7   分支矿体表面模型的重构效果

Fig.7   Reconstruction of the surface model of branch orebody


4 应用案例

笔者针对传统的轮廓线矿体建模方法的缺点做了针对性的改进,并在实际应用中取得了良好的应用效果(图8)。图8a为某铁矿区根据钻孔及相关规范解释出的矿体轮廓线,这些剖面轮廓线形态较为复杂,导致传统方法生成的矿体表面(图8b)三角形质量较差不利于后期数值运算。利用笔者所提出的改进方法生成的三维矿体表面(图8c)的质量大大提高,且完全满足矿体轮廓线的约束,效果良好。

图8

图8   某矿体表面建模的实际应用效果

a—某矿区的三维矿体轮廓线;b—传统轮廓线建模方法的效果;c— 改进后的效果

Fig.8   The practical application of the surface modeling of an ore body

a— three-dimensional ore body contour of a mining area; b— the diagram of traditional contour modeling method; c— the diagram of improved method


5 总结

1) 笔者对于一组单轮廓线引入矿体趋势线,并且还可以对矿体的趋势线进行编辑修改,然后利用中间加密轮廓线的方法实现对矿体形态的控制;

2) 根据封闭轮廓线之间的最短距离自动添加分支点,利用平面的带洞限定三角剖分实现分支的自动构建,同时保证了分支矿体的准确性;

3) 针对初始构建的三维矿体表面模型几何质量差,引入了质量控制,自动地实现了表面模型的重构,保证了模型质量和后续的计算[11,18,23-26]

The authors have declared that no competing interests exist.
作者已声明无竞争性利益关系。

参考文献

赵增玉 .

三维固体矿产资源储量和潜力评价系统关键技术研究

[D]. 北京:北京大学, 2011.

[本文引用: 4]

Zhao Z Y .

Research on key technologies of three dimensional solid mineral resources reserves and potential evaluation system

[D]. Beijing: Peking University, 2011.

[本文引用: 4]

李梅, 毛善君, 马蔼乃 .

平行轮廓线三维矿体重建算法

[J]. 计算机辅助设计与图形学学报, 2006,18(7):1017-1021.

DOI:10.3321/j.issn:1003-9775.2006.07.021      URL     [本文引用: 1]

结合非层状矿体特点,提出带控制线的平行轮廓线三维矿体重建算 法.该算法通过人机交互指定轮廓线上的特征点形成若干条控制线,使得最小跨距三角网在指定的线之间生成;并提出添加辅助线的分支处理方法.在对复杂形态的 矿体实体建模和分支处理问题上进行了编程和实验.实验结果证明该算法简单、高效和实用,从底层开发的三维建模软件可提供相关矿山用户应用.

Li M, Mao S J, Ma A N .

Building orebody solid model from planar contours

[J]. Journal of Computer-Aided Design & Computer Graphics, 2006,18(7):1017-1021.

[本文引用: 1]

马洪滨, 郭甲腾 .

一种新的多轮廓线重构三维形体算法:切开—缝合法

[J]. 东北大学学报:自然科学版, 2007,28(1):111-114.

DOI:10.3321/j.issn:1005-3026.2007.01.028      URL     [本文引用: 2]

综合评述了目前通过多轮廓线重构三维形体表面的算法研究现状。提出了一种新的多轮廓线重构三维形体算法——切开一缝合法(CS).该法通过引入控制点对作为切口,将轮廓线对进行坐标转换和轮廓对应后,切开并铺展成两条平行直线段,通过寻求轮廓线对顶点的对应关系,生成了符合Delaunay法则的三维形体表面三角面片,解决了形状和顶点数目差异较大的相邻轮廓线重构问题,并将其应用到基于剖面的三维地质建模中.实践证明,该算法行之有效,且对解决相似问题具有一定启发性.

Ma H B, Guo J T .

Cut-and-sew algorithm: a new multi-contour reconstruction algothms

[J]. Journal of Northeastern University:Natural Science, 2007,28(1):111-114.]

[本文引用: 2]

孙立双, 毕天平, 马运涛 , .

一种基于剖面轮廓线进行矿体三维建模的方法

[J]. 沈阳建筑大学学报:自然科学版, 2011,27(4):653-658.

URL     [本文引用: 2]

目的研究基于相邻剖面轮廓线进行矿体三维建模算法,提出周长投影法,解决目前矿体三维建模中存在的问题.方法通过坐标变换将相邻轮廓线上的顶点坐标投影到轮廓线所在平面,在相邻的两条轮廓线上通过内插按照距离比例加密点位,使相邻的两个轮廓线上具有相同的点数,然后在两个轮廓线之间构建三角网.结果在相邻剖面矿体轮廓线形体差异较大,点数较多的情况下,利用该方法进行矿体建模能够取得较好的建模效果,矿体模型表面过渡平滑,更具真实感.结论周长投影法符合同步规则,保证了矿体相邻轮廓线在形体上的一致性,在相邻矿体轮廓线形体差异较大、轮廓线线上点数相差较多的情况下,利用该方法能够取得较好的建模效果.

Sun L S, Bi T P, Ma Y T , et al.

An orebody 3D modeling algorithm based on section contour Lines

[J]. Journal of Shenyang Jianzhu University:Natural Science, 2011,27(4):653-658.

[本文引用: 2]

冀晓伟, 卢才武, 李海波 .

三维矿体表面建模中的三角剖分技术及其应用

[J]. 金属矿山, 2011,2:106-110.

URL     [本文引用: 1]

介绍了如何根据勘探线剖面矿体边界线,用三角剖分方法逼近矿体表面,建立矿体三维可视化模型的技术。三维矿体表面建模技术主要包括勘探线剖面矿体边界线的圈定、相邻边界线之间三角剖分和单个边界线内部三角剖分等内容。针对矿体结构复杂的特点,提出应用“凸包投影法”和“凸点逐步消除法”,分别解决相邻凹多边形矿体边界线之间与单个凹多边形矿体边界线内部的三角剖分问题,从而建立起复杂矿体的三维可视化模型。应用研究表明:运用本文方法,根据矿区勘探数据,能够建立起符合实际的三维矿体表面模型。

Ji X W, Lu C W, Li H B . Triangulation technique and its application in 3D ore body surface modeling[J]. Metal Mine, 2011(2):106-110.

[本文引用: 1]

曹国林, 孟耀伟 .

复杂地质构造三维地质体建模方法研究

[J]. 矿冶工程, 2012,32(3):22-29.

DOI:10.3969/j.issn.0253-6099.2012.03.006      URL     [本文引用: 1]

阐述了三维地质体建模的步骤及特点。分别就轮廓线对应、镶嵌和分枝等复杂地质建模中的关键性问题进行了详细论述。以区域面积重合判断法为基础,结合加权品位重心曲线和轮廓线缩放系数两个参数,从局部和整体两个层面解决了轮廓线的对应计算问题。讨论了复杂轮廓线下的镶嵌和分支问题,并给出了基于通过添加控制线和辅助分支信息的解决算法。结合尖灭模型构成了完整的实体建模算法解决方案。实验结果表明此方法具有很高的实用价值。

Cao G L, Meng Y W .

Research on 3D modeling of complex geologic bodies

[J]. Mining and Metallurgical Engineering, 2012,32(3):22-29.

[本文引用: 1]

荆永滨 .

矿床三维地质混合建模与属性插值技术的研究及应用

[D]. 长沙: 中南大学, 2010, 24-25.

[本文引用: 1]

Jing Y B .

Study and application on 3D hybrid geological modeling and attribute interpolation of mineral deposit

[D]. Changsha: Central South University, 2010, 24-25.

[本文引用: 1]

赵攀, 田宜平 .

基于剖面的层状与非层状矿体的三维可视化研究

[J]. 金属矿山, 2008,387(9):90-92,96.

DOI:10.3321/j.issn:1001-1250.2008.09.027      URL     [本文引用: 1]

二维轮廓线重构三维表面是矿体几何建模的重要技术手段。对几种重构中可能出现的问题(轮廓对应问题和轮廓拼接),提出了适合地质体剖面建模使用的轮廓线重构算法。基于剖面的三维地质建模流程,建立地质体的线框面模型及其相应的地质块体模型。

Zhao P, Tian Y P .

Section-based 3D visualization modeling of stratified and non-stratified orebodies

[J]. Metal Mine, 2008,387(9):90-92,96.

[本文引用: 1]

朱良峰, 吴信才, 刘修国 , .

基于钻孔数据的三维地层模型的构建

[J]. 地理与地理信息科学, 2004,20(3):26-30.

DOI:10.3969/j.issn.1672-0504.2004.03.006      URL     [本文引用: 1]

三维地质建模是三维GIS在地学中的一个重要应用,三维地层模型对实际的地质分析极为有用.在综合前人研究成果的基础上,提出了一种由工程钻孔数据构建三维地层模型的方法.该方法以钻孔资料作为地层建模的源数据,具有简单实用、快速稳健的特点,并且能够将用户手工编辑修改的钻孔剖面图融入实际建模流程,解决了以往单纯依靠钻孔数据进行建模而导致的建模结果不精确且难以修正的问题.该文介绍了该方法的基本思想与实现流程,探讨了断层数据的加入对模型的影响及解决方案,并通过一个建模实例展示了该方法的实际建模效果.

Zhu L F, Wu X C, Liu X G , et al.

Reconstruction of 3D strata model based on borehole data

[J]. Geography and Geo-Information Science, 2004,20(3):26-30.

[本文引用: 1]

李兆亮, 潘懋, 杨洋 , .

三维复杂断层网建模方法及应用

[J]. 北京大学学报:自然科学版, 2015,51(1):79-85.

DOI:10.13209/j.0479-8023.2014.173      URL     [本文引用: 1]

For complex fault network, a new path cut algorithm was proposed, by which all types of complicated fault intersection can be dealt with, such as Y, 位, X, half-Y, half-位 contact relations. This fault modeling method not only avoids the limitation of the Pillar method and binary tree method, but also greatly improves the flexibility and accuracy of fault modeling. The method improves semi-automatic processing of the contact relationship between faults and quick updating of fault models. Through the validation of practical model, the modeling of complex fault network can be successfully and quickly solved, and the efficiency of modeling was also greatly improved.

Li Z L, Pan M, Yang Y , et al.

Research and application of the three-dimensional complex fault network modeling

[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2015,51(1):79-85.

[本文引用: 1]

李兆亮, 潘懋, 韩大匡 , .

三维构造建模技术

[J]. 地球科学:中国地质大学学报, 2016,41(12):2136-2146.

[本文引用: 5]

Li Z L, Pan M, Han D K , et al.

Three-dimensional structural modeling technique

[J]. Earth Science, 2016,41(12):2136-2146.

[本文引用: 5]

Meyers D, Skinner S, Sloan K .

Surfaces from Contours

[J]. ACM transactions on graphics, 1992,11(3):228-258.

DOI:10.1145/130881.131213      URL     [本文引用: 1]

Meyers D .

Reconstruction of surfaces from planar contours

[D]. Washington: University of Washington, 1994.

[本文引用: 1]

Keppel E .

Approximating complex surfaces by triangulation of contour lines

[J]. IBM Journal of Research and Development, 1975,19(1):2-11.

DOI:10.1147/rd.191.0002      URL     [本文引用: 1]

An algorithm is described for obtaining an optimal approximation, using triangulation, of a three-dimensional surface defined by randomly distributed points along contour lines. The combinatorial problem of finding the best arrangement of triangles is treated by assuming an adequate objective function. The optimal triangulation is found using classical methods of graph theory. An illustrative example gives the procedure for triangulation of contour lines of a human head for use in radiation therapy planning.

Fuchs H, Kedem Z M, Uselton S P.

Optimal surface reconstruction from planar contours

[C]//Communications of the ACM, 1977,20(10):693-702.

[本文引用: 1]

Ekoule A, Peyrin F, Odet C .

A triangulation algorithm from arbitrary shaped multiple planar contours

[J]. ACM Transactions on Graphics (TOG), 1991,10(2):82-99.

DOI:10.1145/108360.108363      URL     [本文引用: 3]

Conventional triangulation algorithms from planar contours suffer from some limitations. For instance, incorrect results can be obtained when the contours are not convex, or when the contours in two successive slices are very different. In the same way, the presence of multiple contours in a slice leads to ambiguities in defining the appropriate links. The purpose of this paper is to define a general triangulation procedure that provides a solution to these problems. We first describe a simple heuristic triangulation algorithm which is extended to nonconvex contours. It uses an original decomposition of an arbitrary contour into elementary convex subcontours. Then the problem of linking one contour in a slice to several contours in an adjacent slice is examined. To this end, a new and unique interpolated contour is generated between the two slices, and the link is created using the previously defined procedure. Next, a solution to the general case of linking multiple contours in each slice is proposed. Finally, the algorithm is applied to the reconstitution of the external surface of a complex shaped object: a human vertebra.

Ganapathy S, Dennehy T .

A new general triangulation method for planar contours

[J]. ACM Siggraph Computer Graphics, 1982,16(3):69-75.

DOI:10.1145/965145.801264      URL     [本文引用: 1]

The problem of approximating the surface spanning a given set of 3D points as a polyhedron of triangular faces (“triangulation”) is a significant one, and has many applications in the fields of computer graphics and computer vision. In this paper, several solutions to this problem are reviewed. These solutions can be grouped into two classes, and particular emphasis is given to the class of surfaces spanned by parallel planar contours. For a contour pair P0,P1,Pm−1 and Q0,Q1,Qn−1, a graph theoretic approach can be used to arrive at a class of solutions, each requiring exactly m+n steps to triangulate the pair. Existing methods (both rigorous and heuristic) for extracting a particular solution from this group are reviewed, and a new heuristic based on inter-contour coherence is proposed. This heuristic is being used in the field of Ultrasonic Non-destructive Evaluation to produce images of flaws in pressure vessels, and its performance is shown to compare favorably with methods of greater computational complexity. It is believed that this heuristic can also be used with success in industrial vision systems where similar contours are obtained using a laser range finder.

Mallet J L. Geomodeling[M]. New York: Oxford University Press, 2002.

[本文引用: 7]

明镜, 颜玫 .

基于Morphing 的三维地质界面生成

[J]. 地理与地理信息科学, 2014,30(1):37-40.

DOI:10.7702/dlydlxxkx20140108      URL     [本文引用: 2]

利用Morphing技术,参照四周地质界线的形态特征并以之为约束,插值生成一系列形态渐变的过渡曲线,采用轮廓线算法构建相邻曲线间的不规则三角网,并最终生成较为光滑的三维地质界面。将实际复合问题转化为4种基本问题进行求解,并详述了四边问题的实现细节。实验表明,该方法能够生成光滑三维地质界面,并较好地保留了已知地质界线的形态特征。

Ming J, Yan M .

Three-dimensional geological surface creation based on morphing

[J]. Geography and Geo-Information Science, 2014,30(1):37-40.

[本文引用: 2]

何金国, 查红彬 .

基于BPLI二维平行轮廓线重建三维表面的新算法

[J]. 北京大学学报:自然科学版, 2003,39(3):399-411.

DOI:10.3321/j.issn:0479-8023.2003.03.017      URL     [本文引用: 2]

The correspondence and branching problems are vexed problems when reconstructing 3-D surfaces from 2-D parallel contours. BPLI tries to reconstruct non-intersecting surfaces from arbitrary input set of contours and latch a lambent solution of the two problems; however, BPLI remains the shortages of producing degenerate portions and involving time-consuming operations. After an overall analysis of BPLI, this paper proposed a series of new algorithms to improve BPLI approach: first, we proposed a new contour matching algorithm so that the correct similar contour portions of each pair of adjacent slices can be found though the contours are not finely segmented. Secondly, we triangulate the unmatched portions with a new dynamic programming scheme, which has ability to handle degenerate portions in the mesh. These improvements result in a fast triangulating process.

He J G, Zha H B .

New algorithms based on BPLI Solution for reconstructing 3D surfaces fron parallel contours

[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2003,39(3):399-411.

[本文引用: 2]

杨洋, 潘懋, 吴耕宇 , .

一种新的轮廓线三维地质表面重建方法

[J]. 地球信息科学学报, 2015,17(3):253-259.

DOI:10.3724/SP.J.1047.2015.00253      URL     Magsci     [本文引用: 1]

<p>在三维地质建模中,由于地质剖面与医学CT有本质上的相似性,因此,轮廓线的三维表面重建技术有广泛的应用。目前,较为成熟的算法并没有考虑地质数据的特殊性,由于地质体形态复杂多变,地质剖面稀疏、数据来源多样等特点,将普适的算法应用到地质建模中,只是解决了重建曲面的合理性,并没有关注曲面的几何质量,导致曲面无法达到地质建模对于模型质量的要求。本文针对地质数据的特点,提出了一种新的轮廓线表面重构方法。在不改变轮廓线连接的合理性与正确性的情况下,通过生成过渡剖面轮廓线,克服传统方法生成曲面过于粗糙的缺点,以提高建模质量。在Creatar 三维地质基础平台上,对多种情况的剖面数据实验结果表明,在数据稀疏的情况下达到了良好的建模效果。该方法的扩展模型满足了地质剖面轮廓线建模中复杂地质情况,以及交叉剖面数据的曲面重建,且算法复杂度低,实现简单,有较强的实用性。</p>

Yang Y, Pan M, Wu G Y , et al.

High quality geological surface reconstruction from planar contours

[J]. Journal of Geo-information Science, 2015,17(3):253-259.

Magsci     [本文引用: 1]

Shewchuk J R .

Delaunay refinement algorithms for triangular mesh generation

[J]. Computational geometry, 1997,22(1):21-74.

DOI:10.1016/j.comgeo.2014.02.005      URL     [本文引用: 3]

Delaunay refinement is a technique for generating unstructured meshes of triangles for use in interpolation, the finite element method, and the finite volume method. In theory and practice, meshes produced by Delaunay refinement satisfy guaranteed bounds on angles, edge lengths, the number of triangles, and the grading of triangles from small to large sizes. This article presents an intuitive framework for analyzing Delaunay refinement algorithms that unifies the pioneering mesh generation algorithms of L. Paul Chew and Jim Ruppert, improves the algorithms in several minor ways, and most importantly, helps to solve the difficult problem of meshing nonmanifold domains with small angles. Although small angles inherent in the input geometry cannot be removed, one would like to triangulate a domain without creating any new small angles. Unfortunately, this problem is not always soluble. A compromise is necessary. A Delaunay refinement algorithm is presented that can create a mesh in which most angles are 30°61or greater and no angle is smaller than arcsin[(3/2)sin(01/2)]65(3/4)01, where 018160°61is the smallest angle separating two segments of the input domain. New angles smaller than 30°61appear only near input angles smaller than 60°. In practice, the algorithm's performance is better than these bounds suggest. Another new result is that Ruppert's analysis technique can be used to reanalyze one of Chew's algorithms. Chew proved that his algorithm produces no angle smaller than 30°61(barring small input angles), but without any guarantees on grading or number of triangles. He conjectures that his algorithm offers such guarantees. His conjecture is conditionally confirmed here: if the angle bound is relaxed to less than 26.5°, Chew's algorithm produces meshes (of domains without small input angles) that are nicely graded and size-optimal.

Pan M, Li Z L, Gao Z B , et al.

3-D geological modeling-concepts, methods and key techniques

[J]. Acta Geologica Sinica, 2012,86(4):1031-1036.

DOI:10.1111/j.1755-6724.2012.00727.x      URL     [本文引用: 4]

Shewchuk J R.

What is a good linear element? Interpolation, conditioning, and quality measures

[C]//Eleventh International Meshing Roundtable (Ithaca, New York), Sandia National Laboratories, 2002, 115-126.

[本文引用: 1]

Caumon G P, Collon Drouaillet , et al.

Surface-based 3D modeling of geological structures

[J]. Mathematical Geosciences, 2009,41(8):927-945.

DOI:10.1007/s11004-009-9244-2      URL     [本文引用: 4]

Building a 3D geological model from field and subsurface data is a typical task in geological studies involving natural resource evaluation and hazard assessment. However, there is quite often a gap between research papers presenting case studies or specific innovations in 3D modeling and the objectives of a typical class in 3D structural modeling, as more and more is implemented at universities. In this paper, we present general procedures and guidelines to effectively build a structural model made of faults and horizons from typical sparse data. Then we describe a typical 3D structural modeling workflow based on triangulated surfaces. Our goal is not to replace software user guides, but to provide key concepts, principles, and procedures to be applied during geomodeling tasks, with a specific focus on quality control.

Hoppe H, DeRose T, Duchamp T , et al.

Mesh optimization

[C]// SIGGRAPH 93 Conference Proceedings, 1993: 19-26.

[本文引用: 4]

/

京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com