Please wait a minute...
E-mail Alert Rss
 
物探与化探  2019, Vol. 43 Issue (1): 118-124    DOI: 10.11720/wtyht.2019.1342
     方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
基于轮廓线三维矿体表面重建的一种改进算法
李兆亮1,2, 王林飞1,2, 熊盛青1,2, 罗锋1,2, 闫浩飞1,2, 朱自强1,2
1. 中国自然资源航空物探遥感中心,北京 100083
2. 自然资源部 航空地球物理与遥感地质重点实验室,北京 100083
An improved algorithm for surface reconstruction of 3D orebody based on contour line
Zhao-Liang LI1,2, Lin-Fei WANG1,2, Sheng-Qing XIONG1,2, Feng LUO1,2, Hao-Fei YAN1,2, Zi-Qiang ZHU1,2
1. China Aero Geophysivey & Remote Sensing Center for Natural & Resource, Beijing 100083, China;
2. Key laboratoray of Airborn Geophysics and Remote Sensing Geology, Ministry of Natural and Resource, Beijing 100083, China
全文: PDF(2671 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

基于轮廓线的三维矿体表面建模方法是矿体建模的主流方法,但在实际应用中,传统的建模方法显现出了不足之处,笔者对该方法进行了针对性地改进。对于一组单轮廓线可自动添加矿体趋势线,并且还可以进行人工编辑修改,然后利用中间加密轮廓线的方法实现对矿体形态的控制。通过投影计算封闭轮廓线之间的最短距离自动添加分支点,利用平面的带洞限定三角剖分实现分支的自动构建,大大节省了人力资源,同时保证了分支矿体的准确性。针对初始构建的三维矿体表面模型几何质量差,引入了质量控制,实现了表面模型的重构,保证了模型质量和后续的计算。这些改进在实际的应用中取得了良好的效果。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李兆亮
王林飞
熊盛青
罗锋
闫浩飞
朱自强
关键词 矿体表面建模矿体趋势分支矿体网格优化    
Abstract

The 3D orebody surface modeling method based on contours is the main method of orebody modeling; nevertheless, in practical application, the traditional modeling method has shortcomings, which have been improved with the method in this paper. In general, contour lines of these methods are used to reconstruct the surface model by artificial selection of two contour lines, but it is difficult to grasp the overall trend of the orebody as a whole, and the shape of the three dimensional orebodies is relatively coarse. When researchers deal with the problem of branch, it is very tedious to add the branch point in that it takes a lot of manpower and time, and it is difficult to guarantee the correct result. The surface model of the orebody exhibits a lot of degenerated triangles, even in the situation that the surfaces of the orebodies are self-intersected or overlapped, hence the geometric quality of the model is so poor that it influences subsequent visualization and model calculation. The trend line for a group of contours is introduced, and it can also be edited. Then the encryption method for refining the intermediate contours so as to achieve the control of the orebody shape is used. Through projection, the shortest distance between closed contours is calculated, and branch points are automatically added. The constrained triangulation with holes is used to achieve the building of branch automatically, which greatly saves human resources and ensures the accuracy of branch of orebody. According to the problem of poor geometric quality of the initial 3D orebody surface model, the quality control to achieve the reconstruction of the surface model is introduced, which ensures the model quality and subsequent calculation. These improvements have achieved good results in practical application.

Key wordsorebody surface modeling    trend of orebody    branch orebody    mesh optimization
收稿日期: 2018-09-21      出版日期: 2019-02-20
:  P631  
基金资助:国家重点研发计划项目“综合航空地球物理数据处理、解释和管理软件平台研发”(2017YFC0602204)
作者简介: 李兆亮(1983-),男,主要从事地球物理数据处理、综合解释及三维地质建模研究工作。Email: penson_lee@163.com
引用本文:   
李兆亮, 王林飞, 熊盛青, 罗锋, 闫浩飞, 朱自强. 基于轮廓线三维矿体表面重建的一种改进算法[J]. 物探与化探, 2019, 43(1): 118-124.
Zhao-Liang LI, Lin-Fei WANG, Sheng-Qing XIONG, Feng LUO, Hao-Fei YAN, Zi-Qiang ZHU. An improved algorithm for surface reconstruction of 3D orebody based on contour line. Geophysical and Geochemical Exploration, 2019, 43(1): 118-124.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2019.1342      或      https://www.wutanyuhuatan.com/CN/Y2019/V43/I1/118
Fig.1  加入趋势线的轮廓线表面生成方法
a—原始4条剖面轮廓线,所在剖面近似平行;b—自动添加趋势线和中间过渡轮廓线;c—未添加趋势线的表面模型;d—添加曲线线后的表面模型
Fig.2  分支矿体表面模型的建立过程
a—原始数据为两簇闭曲线集合,每组曲线近似位于一个平面上;b—每簇曲线在所在平面上,添加分支节点和外扩的外包并实现带洞三角剖分和边交换;c—将外扩的外包回复到三维状态;d—利用同步前进方法实现两闭曲线的连接,实现分支模型的建立
Fig.3  三角形的外接圆与内接圆示意
Fig.4  三角网的局部操作[22]
Fig.5  交换边实现面网优化的示意
Fig.6  点移动的示意
Fig.7  分支矿体表面模型的重构效果
Fig.8  某矿体表面建模的实际应用效果
a—某矿区的三维矿体轮廓线;b—传统轮廓线建模方法的效果;c— 改进后的效果
[1] 赵增玉 . 三维固体矿产资源储量和潜力评价系统关键技术研究[D]. 北京:北京大学, 2011.
[1] Zhao Z Y . Research on key technologies of three dimensional solid mineral resources reserves and potential evaluation system[D]. Beijing: Peking University, 2011.
[2] 李梅, 毛善君, 马蔼乃 . 平行轮廓线三维矿体重建算法[J]. 计算机辅助设计与图形学学报, 2006,18(7):1017-1021.
doi: 10.3321/j.issn:1003-9775.2006.07.021
[2] Li M, Mao S J, Ma A N . Building orebody solid model from planar contours[J]. Journal of Computer-Aided Design & Computer Graphics, 2006,18(7):1017-1021.
[3] 马洪滨, 郭甲腾 . 一种新的多轮廓线重构三维形体算法:切开—缝合法[J]. 东北大学学报:自然科学版, 2007,28(1):111-114.
doi: 10.3321/j.issn:1005-3026.2007.01.028
[3] Ma H B, Guo J T . Cut-and-sew algorithm: a new multi-contour reconstruction algothms[J]. Journal of Northeastern University:Natural Science, 2007,28(1):111-114.]
[4] 孙立双, 毕天平, 马运涛 , 等. 一种基于剖面轮廓线进行矿体三维建模的方法[J]. 沈阳建筑大学学报:自然科学版, 2011,27(4):653-658.
[4] Sun L S, Bi T P, Ma Y T , et al. An orebody 3D modeling algorithm based on section contour Lines[J]. Journal of Shenyang Jianzhu University:Natural Science, 2011,27(4):653-658.
[5] 冀晓伟, 卢才武, 李海波 . 三维矿体表面建模中的三角剖分技术及其应用[J]. 金属矿山, 2011,2:106-110.
[5] Ji X W, Lu C W, Li H B . Triangulation technique and its application in 3D ore body surface modeling[J]. Metal Mine, 2011(2):106-110.
[6] 曹国林, 孟耀伟 . 复杂地质构造三维地质体建模方法研究[J]. 矿冶工程, 2012,32(3):22-29.
doi: 10.3969/j.issn.0253-6099.2012.03.006
[6] Cao G L, Meng Y W . Research on 3D modeling of complex geologic bodies[J]. Mining and Metallurgical Engineering, 2012,32(3):22-29.
[7] 荆永滨 . 矿床三维地质混合建模与属性插值技术的研究及应用[D]. 长沙: 中南大学, 2010, 24-25.
[7] Jing Y B . Study and application on 3D hybrid geological modeling and attribute interpolation of mineral deposit[D]. Changsha: Central South University, 2010, 24-25.
[8] 赵攀, 田宜平 . 基于剖面的层状与非层状矿体的三维可视化研究[J]. 金属矿山, 2008,387(9):90-92,96.
doi: 10.3321/j.issn:1001-1250.2008.09.027
[8] Zhao P, Tian Y P . Section-based 3D visualization modeling of stratified and non-stratified orebodies[J]. Metal Mine, 2008,387(9):90-92,96.
[9] 朱良峰, 吴信才, 刘修国 , 等. 基于钻孔数据的三维地层模型的构建[J]. 地理与地理信息科学, 2004,20(3):26-30.
doi: 10.3969/j.issn.1672-0504.2004.03.006
[9] Zhu L F, Wu X C, Liu X G , et al. Reconstruction of 3D strata model based on borehole data[J]. Geography and Geo-Information Science, 2004,20(3):26-30.
[10] 李兆亮, 潘懋, 杨洋 , 等. 三维复杂断层网建模方法及应用[J]. 北京大学学报:自然科学版, 2015,51(1):79-85.
doi: 10.13209/j.0479-8023.2014.173
[10] Li Z L, Pan M, Yang Y , et al. Research and application of the three-dimensional complex fault network modeling[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2015,51(1):79-85.
[11] 李兆亮, 潘懋, 韩大匡 , 等. 三维构造建模技术[J]. 地球科学:中国地质大学学报, 2016,41(12):2136-2146.
[11] Li Z L, Pan M, Han D K , et al. Three-dimensional structural modeling technique[J]. Earth Science, 2016,41(12):2136-2146.
[12] Meyers D, Skinner S, Sloan K . Surfaces from Contours[J]. ACM transactions on graphics, 1992,11(3):228-258.
doi: 10.1145/130881.131213
[13] Meyers D . Reconstruction of surfaces from planar contours[D]. Washington: University of Washington, 1994.
[14] Keppel E . Approximating complex surfaces by triangulation of contour lines[J]. IBM Journal of Research and Development, 1975,19(1):2-11.
doi: 10.1147/rd.191.0002
[15] Fuchs H, Kedem Z M, Uselton S P. Optimal surface reconstruction from planar contours [C]//Communications of the ACM, 1977,20(10):693-702.
[16] Ekoule A, Peyrin F, Odet C . A triangulation algorithm from arbitrary shaped multiple planar contours[J]. ACM Transactions on Graphics (TOG), 1991,10(2):82-99.
doi: 10.1145/108360.108363
[17] Ganapathy S, Dennehy T . A new general triangulation method for planar contours[J]. ACM Siggraph Computer Graphics, 1982,16(3):69-75.
doi: 10.1145/965145.801264
[18] Mallet J L. Geomodeling[M]. New York: Oxford University Press, 2002.
[19] 明镜, 颜玫 . 基于Morphing 的三维地质界面生成[J]. 地理与地理信息科学, 2014,30(1):37-40.
doi: 10.7702/dlydlxxkx20140108
[19] Ming J, Yan M . Three-dimensional geological surface creation based on morphing[J]. Geography and Geo-Information Science, 2014,30(1):37-40.
[20] 何金国, 查红彬 . 基于BPLI二维平行轮廓线重建三维表面的新算法[J]. 北京大学学报:自然科学版, 2003,39(3):399-411.
doi: 10.3321/j.issn:0479-8023.2003.03.017
[20] He J G, Zha H B . New algorithms based on BPLI Solution for reconstructing 3D surfaces fron parallel contours[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2003,39(3):399-411.
[21] 杨洋, 潘懋, 吴耕宇 , 等. 一种新的轮廓线三维地质表面重建方法[J]. 地球信息科学学报, 2015,17(3):253-259.
doi: 10.3724/SP.J.1047.2015.00253
[21] Yang Y, Pan M, Wu G Y , et al. High quality geological surface reconstruction from planar contours[J]. Journal of Geo-information Science, 2015,17(3):253-259.
[22] Shewchuk J R . Delaunay refinement algorithms for triangular mesh generation[J]. Computational geometry, 1997,22(1):21-74.
doi: 10.1016/j.comgeo.2014.02.005
[23] Pan M, Li Z L, Gao Z B , et al. 3-D geological modeling-concepts, methods and key techniques[J]. Acta Geologica Sinica, 2012,86(4):1031-1036.
doi: 10.1111/j.1755-6724.2012.00727.x
[24] Shewchuk J R. What is a good linear element? Interpolation, conditioning, and quality measures [C]//Eleventh International Meshing Roundtable (Ithaca, New York), Sandia National Laboratories, 2002, 115-126.
[25] Caumon G P, Collon Drouaillet , et al. Surface-based 3D modeling of geological structures[J]. Mathematical Geosciences, 2009,41(8):927-945.
doi: 10.1007/s11004-009-9244-2
[26] Hoppe H, DeRose T, Duchamp T , et al. Mesh optimization [C]// SIGGRAPH 93 Conference Proceedings, 1993: 19-26.
[1] 陈秀娟, 刘之的, 刘宇羲, 柴慧强, 王勇. 致密储层孔隙结构研究综述[J]. 物探与化探, 2022, 46(1): 22-31.
[2] 肖关华, 张伟, 陈恒春, 卓武, 王艳君, 任丽莹. 浅层地震技术在济南地下空间探测中的应用[J]. 物探与化探, 2022, 46(1): 96-103.
[3] 石磊, 管耀, 冯进, 高慧, 邱欣卫, 阙晓铭. 基于多级次流动单元的砂砾岩储层分类渗透率评价方法——以陆丰油田古近系文昌组W53油藏为例[J]. 物探与化探, 2022, 46(1): 78-86.
[4] 陈大磊, 王润生, 贺春艳, 王珣, 尹召凯, 于嘉宾. 综合地球物理探测在深部空间结构中的应用——以胶东金矿集区为例[J]. 物探与化探, 2022, 46(1): 70-77.
[5] 周能, 邓可晴, 庄文英. 基于线性放电法的多道脉冲幅度分析器设计[J]. 物探与化探, 2022, 46(1): 221-228.
[6] 吴燕民, 彭正辉, 元勇虎, 朱今祥, 刘闯, 葛薇, 凌国平. 一种基于差分接收的电磁感应阵列探头的设计与实现[J]. 物探与化探, 2022, 46(1): 214-220.
[7] 王猛, 刘媛媛, 王大勇, 董根旺, 田亮, 黄金辉, 林曼曼. 无人机航磁测量在荒漠戈壁地区的应用效果分析[J]. 物探与化探, 2022, 46(1): 206-213.
[8] 张化鹏, 钱卫, 刘瑾, 武立林, 宋泽卓. 基于伪随机信号的磁电法渗漏模型试验[J]. 物探与化探, 2022, 46(1): 198-205.
[9] 张建智, 胡富杭, 刘海啸, 邢国章. 煤矿老窑采空区地—井TEM响应特征[J]. 物探与化探, 2022, 46(1): 191-197.
[10] 张宇哲, 孟麟, 王智. 基于Gmsh的起伏地形下井—地直流电法正演模拟[J]. 物探与化探, 2022, 46(1): 182-190.
[11] 马德志, 王炜, 金明霞, 王海昆, 张明强. 海上地震勘探斜缆采集中鬼波产生机理及压制效果分析[J]. 物探与化探, 2022, 46(1): 175-181.
[12] 张洁. 基于拉伸率的3DVSP道集切除技术及应用[J]. 物探与化探, 2022, 46(1): 169-174.
[13] 丁骁, 莫思特, 李碧雄, 黄华. 混凝土内部裂缝对电磁波传输特性参数的影响[J]. 物探与化探, 2022, 46(1): 160-168.
[14] 崔瑞康, 孙建孟, 刘行军, 文晓峰. 低阻页岩电阻率主控因素研究[J]. 物探与化探, 2022, 46(1): 150-159.
[15] 陈亮, 付立恒, 蔡冻, 李凡, 李振宇, 鲁恺. 基于模拟退火法的磁共振测深多源谐波噪声压制方法[J]. 物探与化探, 2022, 46(1): 141-149.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com