|
|
|
| Assessment of green food production areas: A case study of the Yongqing area in the Beijing-Tianjin-Hebei region |
HU Qing-Hai1,2( ), WANG Xue-Qiu1,2( ), TIAN Mi1,2, WU Hui1,2, LIU Qing-Qing1,2, LI Jun-Hua3, PAN Wei1,2, WANG Li-Jun1,2 |
1. Key Laboratory of Geochemical Exploration, Ministry of Natural Resources, Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences (CAGS),Langfang 065000, China 2. UNESCO International Centre on Global-scale Geochemistry, Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences (CAGS),Langfang 065000, China 3. Langfang Natural Resources Comprehensive Survey Center, China Geological Survey, Langfang 065000, China |
|
|
|
|
Abstract The green food industry has developed vigorously in recent years. Properly choosing green food production areas through environmental quality surveys and assessments can ensure the quality of green food and generate significant economic, social, and ecological benefits. China has obtained vast amounts of high-quality geochemical data by implementing a series of geochemical survey programs. However, there is a lack of software platforms that can translate these scientific data into a language that is easily understandable and usable by the public. To address this issue, this study conducted a systematic investigation and assessment of green land at the village and plot scale in Yongqing County. A total of 822 topsoil and deep soil samples were collected from 386 administrative villages and four agricultural science and technology industrial parks in Yongqing County. Based on these soil samples, 54 elements and indicators were analyzed, focusing on nutrient elements like nitrogen, phosphorus, and potassium closely associated with green food production areas, eight hazardous heavy metals including copper, lead, zinc, nickel, chromium, cadmium, arsenic, and mercury, and health-related elements like selenium, germanium, fluorine, and iodine. The land in the Yongqing area was categorized and rated to comprehensively analyze the distribution of the elements and systematically assess and utilize the land. Finally, unique QR codes were generated for various land plots. The survey results indicate that the Yongqing area, one of the cleanest contiguous land areas in the Beijing-Tianjin-Hebei region, holds a solid foundation for vigorously developing the green food industry. The QR code identification technology can serve the protection and utilization of green land and farmers' production and income increase. This technology assists in establishing an accurate zoning and grading system based on geochemical characteristics for the study area. The system further facilitates the formulation of targeted ecosystem conservation measures characterized by specialized strategies for specific locations, achieving precise management and efficient control of ecosystems. Moreover, based on the Chemical Earth big data platform, the first geochemical spatial big data platform for green industries can be constructed to create the database of green land in Yongqing County and generate QR codes for visual land identification, thereby facilitating the government's management, enterprises' farming and sales, and consumers' inquiries. This technology is expected to generate significant economic and social benefits in the future.
|
|
Received: 29 November 2024
Published: 23 October 2025
|
|
|
|
|
|
10-11] ">
|
Soil sampling sites of the Yongqing County[10-11]
|
| 分析方法 | 项数 | 元素指标(检出限) | | X射线荧光光谱法(XRF) | 21 | Ba(5)、Br(1)、Cl(20)、Cr(5)、Ge(0.1)、La(1)、P(5)、V(5)、Mn(5)、 Nb(2)、Rb(5)、Sr(5)、Tl(0.1)、Ti(5)、Y(1)、Zr(2)、SiO2(0.1)、 Al2O3(0.05)、Fe2O3(0.05)、K2O(0.05)、CaO(0.05) | | 电感耦合等离子体质谱法(ICP-MS) | 12 | Bi(0.05)、Cd(30)、Cs(1)、Co(1)、Cu(1)、Ga(2)、Mo(0.2)、Ni(2)、 Pb(2)、Sc(1)、Th(2)、U(0.1) | | 电感耦合等离子体光学发射光谱法(ICP-OES) | 6 | Na2O(0.1)、MgO(0.05)、S(30)、Zn(4)、Be(0.5)、Li(1) | | 氢化物—原子荧光光谱法(HG-AFS) | 3 | As(1)、Sb(0.05)、Se(0.01) | | 冷蒸汽—原子荧光光谱法(CV-AFS) | 1 | Hg(0.5) | | 发射光谱法(ES) | 2 | B(1)、Sn(1) | | 离子选择性电极法(ISE) | 1 | F(100) | | 催化—分光光度法(COL) | 1 | I(0.5) | | 氧化燃烧—气相色谱法(GC) | 2 | N(20)、TC(0.1) | | 氧化热解—电位法(POT) | 1 | Corg(0.1) | | 电位法(POT) | 1 | pH(0.1) | | 碱解—扩散法 | 1 | 碱解氮(1.25) | | 乙酸铵提取,等离子体光谱法测定(ICP-OES) | 1 | 速效钾(1.25) | | 碳酸氢钠提取,等离子体光谱法测定(ICP-OES) | 1 | 有效磷(0.25) | | 氯化铵—乙酸铵交换法 | 1 | CEC(2.5) |
|
Soil sample analysis method matching scheme
|
| 绿色食品产地环境质量要求 | As | Cd | Cr | Cu | Hg | Ni | Pb | Zn | | pH<6.5 | 25 | 0.3 | 120 | 50 | 0.25 | | 50 | | | 6.5≤pH≤7.5 | 20 | 0.3 | 120 | 60 | 0.3 | | 50 | | | pH>7.5 | 20 | 0.4 | 120 | 60 | 0.35 | | 50 | | | 农用地土壤污染风险管制值 | As | Cd | Cr | Cu | Hg | Ni | Pb | Zn | | pH≤5.5 | 200 | 1.5 | 800 | 250* | 2.0 | 300* | 400 | 1000* | | 5.5<pH≤6.5 | 150 | 2.0 | 850 | 250* | 2.5 | 350* | 500 | 1000* | | 6.5<pH≤7.5 | 120 | 3.0 | 1000 | 500* | 4.0 | 500* | 700 | 1250* | | pH>7.5 | 100 | 4.0 | 1300 | 500* | 6.0 | 950* | 1000 | 1500* |
|
Environmental quality requirement of green food production area and risk control values for soil pollution of agricultural land
|
| 项目 | 级别 | 旱地 | 菜地 | 园地 | | 有机质 | Ⅰ | >15 | >30 | >20 | | Ⅱ | 10~15 | 20~30 | 15~20 | | Ⅲ | <10 | <20 | <15 | | 全氮 | Ⅰ | >1.0 | >1.2 | >1.0 | | Ⅱ | 0.8~1.0 | 1.0~1.2 | 0.8~1.0 | | Ⅲ | <0.8 | <1.0 | <0.8 | | 有效磷 | Ⅰ | >10 | >40 | >10 | | Ⅱ | 5~10 | 20~40 | 5~10 | | Ⅲ | <5 | <20 | <5 | | 速效钾 | Ⅰ | >120 | >150 | >100 | | Ⅱ | 80~120 | 100~150 | 50~100 | | Ⅲ | <80 | <100 | <50 |
|
Soil fertility grading standard of green food production area (according to the Environmental Quality of Green Food Origin (NY/T 391—2021) [15])
|
|
Interface of the “Chemical Earth” platform
|
| 参数 | Se | I | F | Ge | | 最小值 | 0.05 | 0.43 | 350 | 0.62 | | 最大值 | 0.44 | 17.00 | 1104 | 1.66 | | 平均值 | 0.17 | 3.84 | 557 | 1.21 | | 中位数 | 0.17 | 3.44 | 544 | 1.19 | | 变异系数/% | 28.20 | 63.50 | 20.1 | 11.90 | | 河北省表层土壤平均值[21] | | 1.55 | 462 | 1.60 | | 中国表层土壤平均值[21] | 0.29 | 3.80 | 480 | 1.70 |
|
Statistics of selenium, iodine, fluorine, germanium in surface soils in the Yongqing county 10-6
|
|
Geochemical maps of selenium (a), iodine (b), fluorine (c), germanium (d) contents in surface soils in the Yongqing County
|
|
Geochemical class maps of selenium (a), iodine (b), fluorine (c), germanium (d) contents in surface soils in the Yongqing county
|
|
Land two-dimensional code identification and content display of the Yanfen family farm in Yongqing County, Hebei Province
|
|
Interface of “the Green Land” module in the “Chemical Earth” platform
|
| [1] |
NY/T 391—2013绿色食品产地环境质量[S]. 北京: 中国农业出版社, 2013.
|
| [1] |
NY/T 391—2013 Environmental quality of green food production areas[S]. Beijing: China Agriculture Press, 2013.
|
| [2] |
中国绿色食品发展中心. 2022年绿色食品统计年报[R]. 北京: 中国绿色食品发展中心, 2023.
|
| [2] |
China Green Food Development Center. Annual report of green food statistics in 2022[R]. Beijing: China Green Food Development Center, 2023.
|
| [3] |
张志华, 余汉新, 李显军, 等. 我国绿色食品产业发展战略研究[J]. 中国农业资源与区划, 2015, 36(3):35-38.
|
| [3] |
Zhang Z H, Yu H X, Li X J, et al. Research on the development strategy of green food industry in China[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2015, 36(3):35-38.
|
| [4] |
孟枫平, 祝洋. 中国绿色食品产业发展研究文献综述[J]. 安徽农业大学学报:社会科学版, 2021, 30(5):58-66.
|
| [4] |
Meng F P, Zhu Y. A literature review on the development of green food industry in China[J]. Journal of Anhui Agricultural University:Social Sciences Edition, 2021, 30(5):58-66.
|
| [5] |
史长义, 冯斌, 彭敏, 等. 勘查地球化学现状与展望[J]. 物探化探计算技术, 2022, 44(6):671-697.
|
| [5] |
Shi C Y, Feng B, Peng M, et al. Present status and prospects of exploration geochemistry[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2022, 44(6):671-697.
|
| [6] |
李括, 彭敏, 赵传冬, 等. 全国土地质量地球化学调查二十年[J]. 地学前缘, 2019, 26(6):128-158.
|
| [6] |
Li K, Peng M, Zhao C D, et al. Vicennial implementation of geochemical survey of land quality in China[J]. Earth Science Frontiers, 2019, 26(6):128-158.
|
| [7] |
Wang X Q, Zhang B M, Nie L S, et al. Mapping chemical earth program:Progress and challenge[J]. Journal of Geochemical Exploration, 2020,217:106578.
|
| [8] |
张必敏, 王学求, 周建, 等. 国际地球化学填图走向新阶段[J]. 物探化探计算技术, 2022, 44(6):797-804.
|
| [8] |
Zhang B M, Wang X Q, Zhou J, et al. International geochemical mapping moves towards a new phase[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2022, 44(6):797-804.
|
| [9] |
刘彬, 崔邢涛, 王学求, 等. 河北省永清县地下水重金属来源识别及健康风险评价[J]. 生态与农村环境学报, 2023, 39(6):741-749.
|
| [9] |
Liu B, Cui X T, Wang X Q, et al. Source identification and health risk assessment of heavy metals in groundwater of Yongqing County,Hebei Province[J]. Journal of Ecology and Rural Environment, 2023, 39(6):741-749.
|
| [10] |
胡庆海, 王学求, 韩志轩, 等. 京津冀地区永清县土壤重金属地球化学特征及绿色食品产地的土壤质量评价[J]. 现代地质, 2023, 37(3):778-789.
|
| [10] |
Hu Q H, Wang X Q, Han Z X, et al. Geochemical characteristics of heavy metals in soils and soil quality evaluation of green food production in the Yongqing County of Beijing-Tianjin-Hebei Region[J]. Geoscience, 2023, 37(3):778-789.
|
| [11] |
胡庆海, 李俊华, 王学求, 等. 河北省永清县农耕区土壤肥力主要指标现状评价[J]. 物探与化探, 2023, 47(6):1611-1619.
|
| [11] |
Hu Q H, Li J H, Wang X Q, et al. Evaluation of the primary soil fertility indices for the agricultural area of Yongqing County,Hebei Province[J]. Geophysical and Geochemical Exploration, 2023, 47(6):1611-1619.
|
| [12] |
中华人民共和国国土资源部. DZ/T 0295—2016土地质量地球化学评价规范[S]. 北京: 中国标准出版社, 2016.
|
| [12] |
Ministry of Land and Resources of the People’s Republic of China. DZ/T 0295—2016 Determination of land quality geochemical evaluation[S]. Beijing: Standards Press of China, 2016.
|
| [13] |
张勤. 多目标地球化学填图中的54种指标配套分析方案和分析质量监控系统[J]. 第四纪研究, 2005, 25(3):292-297.
|
| [13] |
Zhang Q. A complete set of analytical schemes and analytical data monitoring systems for determinations of 54 components in multi-purpose geochemical mapping[J]. Quaternary Sciences, 2005, 25(3):292-297.
|
| [14] |
张勤, 白金峰, 王烨. 地壳全元素配套分析方案及分析质量监控系统[J]. 地学前缘, 2012, 19(3):33-42.
|
| [14] |
Zhang Q, Bai J F, Wang Y. Analytical scheme and quality monitoring system for China geochemical baselines[J]. Earth Science Frontiers, 2012, 19(3):33-42.
|
| [15] |
NY/T 391—2021绿色食品产地环境质量[S]. 北京: 中国农业出版社, 2021.
|
| [15] |
NY/T 391—2021 Environmental quality of green food production areas[S]. Beijing: China Agriculture Press, 2021.
|
| [16] |
李金哲, 刘宁强, 龚庆杰, 等. 广东汕头市内海湾沉积物重金属环境质量调查与评价[J]. 现代地质, 2021, 35(5):1441-1449.
|
| [16] |
Li J Z, Liu N Q, Gong Q J, et al. Investigation and evaluation on environmental quality of heavy metals in sediments of the inland bay of Shantou City,Guangdong Province[J]. Geoscience, 2021, 35(5):1441-1449.
|
| [17] |
生态环境部, 国家市场监督管理总局.GB 15618—2018土壤环境质量农用地土壤污染风险管控标准[S]. 北京: 中国标准出版社, 2018.
|
| [17] |
Ministry of Ecology and Environment,State Administration for Market Regulation. GB 15618—2018 Soil environmental quality Risk control standard for soil contamination of agricultural land[S]. Beijing: Standards Press of China, 2018.
|
| [18] |
聂兰仕, 王学求, 徐善法, 等. 全球地球化学数据管理系统:“化学地球” 软件研制[J]. 地学前缘, 2012, 19(3):43-48.
|
| [18] |
Nie L S, Wang X Q, Xu S F, et al. Global geochemical data management:Development of Chemical Earth software[J]. Earth Science Frontiers, 2012, 19(3):43-48.
|
| [19] |
Hakanson L. An ecological risk index for aquatic pollution control.a sedimentological approach[J]. Water Research, 1980, 14(8):975-1001.
|
| [20] |
夏文建, 张丽芳, 刘增兵, 等. 长期施用化肥和有机肥对稻田土壤重金属及其有效性的影响[J]. 环境科学, 2021, 42(5):2469-2479.
|
| [20] |
Xia W J, Zhang L F, Liu Z B, et al. Effects of long-term application of chemical fertilizers and organic fertilizers on heavy metals and their availability in reddish paddy soil[J]. Environmental Science, 2021, 42(5):2469-2479.
|
| [21] |
国家环境保护局, 中国环境监测总站. 中国土壤元素背景值[M]. 北京: 中国环境科学出版社,1990:326-359.
|
| [21] |
State Environmental Protection Administration, China National Environmental Monitoring Centre. Background values of soil elements in China[M]. Beijing: China Environmental Science Press,1990:326-359.
|
| [1] |
ZHANG Wen-Qiang, LI Chang-Suo, LIU Jin-Xin, CHENG Shi-Yue, TENG Yue, LI Gen-Lin. Geochemical characteristics of soil nutrient elements in cultivated land within a typical agricultural area, Liaocheng City, China[J]. Geophysical and Geochemical Exploration, 2025, 49(5): 1232-1242. |
| [2] |
LIU Hong-Bo, SHI Jia-Hui, WANG Si-Yin, PEI Jiu-Bo. Prediction and comparison of organic carbon content in topsoils based on geostatistics and machine learning models: A case study of Baoqing County[J]. Geophysical and Geochemical Exploration, 2025, 49(5): 1243-1250. |
|
|
|
|