|
|
Soil geochemical characteristics and prospecting orientations in the Bishan area, Xianghuang Banner, Inner Mongolia |
CHAI Chen-Hui( ), QIN Yue-Qiang, LI Peng-Yuan, XIN Kai, WANG Jian-Min, YIN Jia-Le, LI Chao-Qun, YUAN Ning-Bo, GUO Dong, SUN Yu-Fei( ) |
Langfang Natural Resources Comprehensive Survey Center, CGS, Langfang 065000, China |
|
|
Abstract To determine the optimal prospecting target in the Bishan area, Xianghuang Banner, Inner Mongolia, this study conducted a geochemical survey at 1∶10,000 scale. Using multivariable statistical analysis, this study analyzed 14 elements (i.e., Au, Ag, Cu, Pb, Zn, Mn, Mo, Li, W, Sb, Bi, B, Hg, and As) in soil samples from the study area. The results indicate that six elements, including Au, Ag, Pb, Zn, Li, and As, exhibited high enrichment degrees, suggesting their significant metallogenic potential. The anomalies of high-content elements are principally dictated by the outer contact zone between tuffs/tuffaceous volcanic breccias and granites in the Lower Permian Sanmianjing Formation. The ore-forming elements are primarily controlled by the NW-trending fault zone. Alterations like silicification, binarite, pyrite, galena, and sphalerite alterations serve as principal prospecting markers. Based on the geological conditions for mineralization in the Bishan area, this study delineated three composite anomalies and two prospecting targets, with Ag ore bodies discovered through engineering validation. Soil geochemistry proves crucial for the successful identification of polymetallic ore bodies, thereby providing a significant foundation for subsequent mineral exploration efforts.
|
Received: 12 September 2024
Published: 07 August 2025
|
|
|
|
|
5]) and regional geological schematic map (b) (revised by Li[15]) of Bishan area, Xianghuang Banner, Inner Mongolia 1—lower Permian Sanmianjing Formation;2—lower Permian Elitu Formation;3—upper Jurassic Manketouebo Formation;4—lower Cretaceous Damoguaihe Formation;5—Pliocene Baogedawula Formation;6—Holocene sand and gravel;7—Jurassic biotite granite;8—Jurassic biotite quartz porphyry and quartz porphyry;9—Jurassic biotite quartz diorite;10—Cretaceous granite porphyry;11—granite vein;12—granite porphyry vein;13—granitic pegmatite vein;14—quartz vein;15—diorite porphyrite vein;16—measured geological boundary;17—measured angular unconformity boundary;18—measured lithofacies zone boundary;19—measured normal fault;20—measured reverse fault;21—measured fault of unknown kinematics;22—bedding attitude;23—study area;24—schematic location of Fig.b in Fig.a ">
|
Geotectonic location (a) (revised by Liu et al.[5]) and regional geological schematic map (b) (revised by Li[15]) of Bishan area, Xianghuang Banner, Inner Mongolia 1—lower Permian Sanmianjing Formation;2—lower Permian Elitu Formation;3—upper Jurassic Manketouebo Formation;4—lower Cretaceous Damoguaihe Formation;5—Pliocene Baogedawula Formation;6—Holocene sand and gravel;7—Jurassic biotite granite;8—Jurassic biotite quartz porphyry and quartz porphyry;9—Jurassic biotite quartz diorite;10—Cretaceous granite porphyry;11—granite vein;12—granite porphyry vein;13—granitic pegmatite vein;14—quartz vein;15—diorite porphyrite vein;16—measured geological boundary;17—measured angular unconformity boundary;18—measured lithofacies zone boundary;19—measured normal fault;20—measured reverse fault;21—measured fault of unknown kinematics;22—bedding attitude;23—study area;24—schematic location of Fig.b in Fig.a
|
|
Geological schematic map and comprehensive anomaly of Bishan research area 1—upper Jurassic Manketouebo Formation;2—Holocene sand and gravel;3—Jurassic fine-grained monzogranite;4—Cretaceous granite porphyry;5—granite porphyry vein;6—granite vein;7—rhyolite porphyry vein;8—quartz vein;9—mineralized alteration zone;10—orebody location and number;11—geological boundary;12—measured fault;13—comprehensive anomaly area and number;14—prospecting target area and number;15—borehole location and number;16—trench location and number
|
原始数据 | 元素 | 最小值 | 最大值 | 算术平均值 | 标准离差 | 变异系数CV1 | 富集系数K1 | 陆壳元素丰度[39] | Li | 1.90 | 633.20 | 25.90 | 22.30 | 0.86 | 1.13 | 16.00 | Cu | 0 | 2520.10 | 14.70 | 56.20 | 3.82 | 0.86 | 18.00 | Zn | 5.70 | 1769.90 | 107.60 | 143.60 | 1.33 | 1.58 | 60.00 | Mo | 0.09 | 52.52 | 1.34 | 1.90 | 1.42 | 2.16 | 0.60 | W | 0.18 | 64.32 | 2.22 | 3.09 | 1.39 | 2.29 | 0.90 | Pb | 5.00 | 8119.40 | 138.20 | 180.10 | 13.05 | 7.27 | 17.00 | Bi | 0 | 50.49 | 0.40 | 1.84 | 4.59 | 2.23 | 0.13 | Ag | 0.01 | 22.16 | 0.53 | 0.96 | 1.82 | 8.82 | 55.00 | B | 4.00 | 246.00 | 54.00 | 39.00 | 0.72 | 2.58 | 17.00 | Sn | 0.70 | 50.00 | 4.00 | 5.10 | 1.27 | 1.90 | 1.50 | As | 0.80 | 2255.50 | 97.30 | 54.90 | 5.60 | 22.12 | 1.90 | Sb | 0 | 1055.58 | 3.65 | 26.10 | 7.14 | 10.75 | 0.18 | Hg | 0 | 635.00 | 9.00 | 16.00 | 1.84 | 0.72 | 8.00 | Au | 0 | 181.80 | 0.80 | 4.60 | 5.76 | 0.94 | 0.74 | 多次迭代后 | 元素 | 最小值 | 最大值 | 算术平均值 | 标准离差 | 变异系数CV2 | 富集系数K2 | 偏度 | 峰度 | Li | 5.40 | 89.50 | 24.70 | 12.80 | 0.52 | 1.08 | 1.31 | 1.81 | Cu | 0.50 | 117.60 | 12.30 | 15.50 | 1.26 | 0.73 | 3.06 | 10.96 | Zn | 5.70 | 1025.90 | 104.50 | 127.30 | 1.22 | 1.54 | 2.93 | 10.51 | Mo | 0.18 | 6.55 | 1.20 | 0.92 | 0.77 | 1.93 | 2.37 | 7.24 | W | 0.18 | 12.77 | 2.00 | 1.78 | 0.89 | 2.07 | 2.51 | 8.02 | Pb | 5.00 | 374.90 | 48.30 | 55.80 | 1.15 | 2.54 | 2.85 | 9.36 | Bi | 0.01 | 4.19 | 0.29 | 0.49 | 1.71 | 1.60 | 4.06 | 20.76 | Ag | 0.01 | 5.10 | 0.52 | 0.89 | 1.71 | 8.72 | 3.15 | 10.59 | B | 5.00 | 246.00 | 54.00 | 39.00 | 0.72 | 2.58 | 1.49 | 2.36 | Sn | 0.70 | 23.70 | 3.60 | 3.70 | 1.01 | 1.72 | 2.65 | 7.63 | As | 0.80 | 1580.50 | 72.40 | 145.90 | 2.02 | 16.45 | 4.61 | 29.09 | Sb | 0.03 | 44.70 | 2.53 | 4.56 | 1.81 | 7.44 | 4.66 | 28.77 | Hg | 0 | 635.00 | 9.00 | 16.00 | 1.84 | 0.72 | 29.97 | 1078.03 | Au | 0 | 5.90 | 0.50 | 0.70 | 1.32 | 0.60 | 3.75 | 18.31 |
|
Statistics of soil geochemical elements in Bishan polymetallic ore exploration area, Xianghuang Banner
|
变异系数CV | 富集系数K | 范围 | 分异程度 | 元素 | 范围 | 富集程度 | 元素 | >2.00 | 极强分异 | Cu、Pb、Bi、 As、Sb、Au | >2.00 | 极强富集 | Mo、W、Pb、Bi、 Ag、B、As、Sb | 1.00~2.00 | 强分异 | Zn、Mo、W、 Ag、Sn、Hg | 1.50~2.00 | 强富集 | Li、Zn、Sn | 0.75~1.00 | 较强分异 | Li | 1.20~1.50 | 较强富集 | Cu、Au | 0.5~0.75 | 弱分异 | B | 0.80~1.20 | 正常 | Hg | 0.25~0.5 | 不均匀 | - | 0.50~0.80 | 贫乏 | - | <0.25 | 均匀 | - | <0.50 | 强贫乏 | - |
|
Classification statistics of variation coefficient and enrichment coefficient of soil elements
|
|
Element dispersion in the Bishan polymetallic ore exploration area of Xianghuang Banner
|
元素 | Li | Cu | Zn | Mo | W | Pb | Bi | Ag | B | Sn | As | Sb | Hg | Au | Li | 1 | | | | | | | | | | | | | | Cu | 0.141 | 1 | | | | | | | | | | | | | Zn | 0.252 | 0.350 | 1 | | | | | | | | | | | | Mo | 0.218 | 0.502 | 0.401 | 1 | | | | | | | | | | | W | 0.275 | 0.300 | 0.329 | 0.443 | 1 | | | | | | | | | | Pb | 0.066 | 0.954 | 0.203 | 0.436 | 0.222 | 1 | | | | | | | | | Bi | 0.122 | 0.694 | 0.353 | 0.477 | 0.249 | 0.631 | 1 | | | | | | | | Ag | 0.290 | 0.327 | 0.540 | 0.415 | 0.384 | 0.234 | 0.368 | 1 | | | | | | | B | 0.315 | 0.191 | 0.432 | 0.359 | 0.307 | 0.090 | 0.188 | 0.490 | 1 | | | | | | Sn | 0.216 | 0.252 | 0.529 | 0.339 | 0.306 | 0.084 | 0.295 | 0.433 | 0.371 | 1 | | | | | As | 0.109 | 0.922 | 0.336 | 0.493 | 0.319 | 0.913 | 0.638 | 0.378 | 0.214 | 0.233 | 1 | | | | Sb | 0.102 | 0.913 | 0.244 | 0.460 | 0.256 | 0.945 | 0.616 | 0.306 | 0.150 | 0.161 | 0.946 | 1 | | | Hg | 0.143 | 0.932 | 0.266 | 0.477 | 0.275 | 0.944 | 0.635 | 0.310 | 0.172 | 0.166 | 0.889 | 0.882 | 1 | | Au | 0.098 | 0.899 | 0.258 | 0.429 | 0.270 | 0.925 | 0.601 | 0.322 | 0.160 | 0.134 | 0.923 | 0.893 | 0.913 | 1 |
|
Approximation matrix of soil element correlation analysis
|
|
Pedigree of cluster analysis of soil element
|
KMO取样适切性量数 | 0.879 | 巴特利特球形度检验 | 近似卡方 | 56525.222 | 自由度 | 91 | 显著性 | 0 |
|
KMO and Bartlett sphericity tests
|
因子 | Li | Cu | Zn | Mo | W | Pb | Bi | Ag | B | Sn | As | Sb | Hg | Au | F1 | 0.006 | 0.948 | 0.179 | 0.446 | 0.210 | 0.983 | 0.672 | 0.218 | 0.041 | 0.068 | 0.937 | 0.944 | 0.946 | 0.951 | F2 | 0.522 | 0.207 | 0.742 | 0.539 | 0.568 | 0.031 | 0.322 | 0.741 | 0.720 | 0.707 | 0.216 | 0.126 | 0.149 | 0.125 |
|
Orthogonal rotating load matrix
|
|
Soil survey geochemical distribution of Bishan research area
|
组合异常编号 | 面积/km2 | 元素组合 | 单元素异常数 | 单元素异常NAP和 | 矿化信息 | 评序 | 异常分类 | HT-1 | 0.1897 | Mo、Pb、Bi、Zn、As、Sb、Sn、W、Cu、Li | 17 | 0.5481 | | 2 | 丙 | HT-2 | 1.0024 | Pb、Sb、Cu、As、Au、Bi、Sn、Mo、Zn、W、Ag、B、Li、Hg | 33 | 15.9598 | 1 | 1 | 乙 | HT-3 | 0.0895 | Li、Pb、Sb、Au、Ag、As、W、Bi | 8 | 0.2672 | | 3 | 乙 |
|
Comprehensive abnormal evaluation order
|
|
HT-1 comprehensive anomaly
|
|
HT-2 comprehensive anomaly
|
|
HT-3 comprehensive anomaly
|
[1] |
Kovalenko V I, Yarmolyuk V V. Endogenous rare metal ore formations and rare metal metallogeny of Mongolia[J]. Economic Geology, 1995, 90(3):520-529.
|
[2] |
Mann A W, Birrell R D, Fedikow M A F, et al. Vertical ionic migration:Mechanisms,soil anomalies,and sampling depth for mineral exploration[J]. Geochemistry:Exploration, Environment,Analysis, 2005, 5(3):201-210.
|
[3] |
刘永胜, 罗先熔, 曹佰迪, 等. 甘肃省礼县三峪地区土壤地球化学特征及找矿预测[J]. 西北地质, 2023, 56(6):340-351.
|
[3] |
Liu Y S, Luo X R, Cao B D, et al. Soil geochemical characteristics and prospecting prediction in Sanyu area,Li County,Gansu Province[J]. Northwestern Geology, 2023, 56(6):340-351.
|
[4] |
Wang K Y, Fan H R, Yang K F, et al. Bayan Obo carbonatites:Texture evidence from polyphase intrusive and extrusive carbonatites[J]. Acta Geologica Sinica-English Edition, 2010, 84(6):1365-1376.
|
[5] |
刘训, 游国庆. 中国的板块构造区划[J]. 中国地质, 2015, 42(1):1-17.
|
[5] |
Liu X, You G Q. Tectonic regional subdivision of China in the light of plate theory[J]. Geology in China, 2015, 42(1):1-17.
|
[6] |
刘金宝, 张晓峰. 内蒙古镶黄旗地区和睦岩体地球化学特征及地质意义[J]. 西部资源, 2024(2):34-43.
|
[6] |
Liu J B, Zhang X F. Geochemical characteristics and geological significance of Hemu rock mass in Xianghuang Banner,Inner Mongolia[J]. Western Resources, 2024(2):34-43.
|
[7] |
徐志刚, 陈毓川, 王登红, 等. 中国成矿区带划分方案[M]. 北京: 地质出版社, 2008.
|
[7] |
Xu Z G, Chen Y C, Wang D H, et al. Scheme of the classification of the minerogenetic units in China[M]. Beijing: Geological Publishing House, 2008.
|
[8] |
李文明, 刘拓, 孙吉明, 等. 新疆北山白山地区地球化学特征及找矿远景预测[J]. 西北地质, 2021, 54(4):42-48.
|
[8] |
Li W M, Liu T, Sun J M, et al. Geochemical characteristics and prospecting prognosis in Baishan area of Xinjiang Beishan[J]. Northwestern Geology, 2021, 54(4):42-48.
|
[9] |
Aghahadi M H, Jozanikohan G, Asghari O, et al. Geochemical anomaly separation based on geology,geostatistics,compositional data and local singularity analyses:A case study from the kuh panj copper deposit,Iran[J]. Applied Geochemistry, 2024,173:106135.
|
[10] |
温海成, 杨丽慧, 刘怀金, 等. 内蒙古阿拉格乌拉地区土壤地球化学特征及找矿预测[J]. 中国矿业, 2024, 33(S1):532-537.
|
[10] |
Wen H C, Yang L H, Liu H J, et al. Soil geochemical characteristics and prospecting prediction in Alagewula Area,Inner Mongolia[J]. China Mining Magazine, 2024, 33(S1):532-537.
|
[11] |
张勇, 邢树文, 马玉波, 等. 华北陆块北缘稀土Mo-Pb-Zn-Au多金属成矿带特征及资源潜力[J]. 地质学报, 2016, 90(7):1458-1469.
|
[11] |
Zhang Y, Xing S W, Ma Y B, et al. Metallogenic characteristics and mineral resource potential of the REE-Mo-Pb-Zn-Au polymetallic metallogenic belt in the northern margin of the North China Craton[J]. Acta Geologica Sinica, 2016, 90(7):1458-1469.
|
[12] |
李天虎, 彭桥梁, 王伟, 等. 新疆温宿县盐场地区水系沉积物地球化学特征及找矿效果[J]. 西北地质, 2022, 55(1):78-92.
|
[12] |
Li T H, Peng Q L, Wang W, et al. Geochemical characteristics and ore prospecting of stream sediment in Yanchang area of Wensu,Xinjiang[J]. Northwestern Geology, 2022, 55(1):78-92.
|
[13] |
袁和, 白银增, 耿树峰, 等. 辽宁省重点金矿集区地质特征及成岩成矿作用[J]. 中国地质调查, 2023, 10(4):37-45.
|
[13] |
Yuan H, Bai Y Z, Geng S F, et al. Geological characteristics, diagenesis and mineralization of key gold concentration areas in Liaoning Province[J]. Geological Survey of China, 2023, 10(4):37-45.
|
[14] |
张文斌, 周贤君, 侯翠霞, 等. 甘肃北山老君庙北金矿土壤地球化学特征及找矿前景[J]. 物探与化探, 2024, 48(4):945-953.
|
[14] |
Zhang W B, Zhou X J, Hou C X, et al. Geochemical characteristics of soils and prospecting potential of the northern Laojunmiao gold deposit in the Beishan area,Gansu Province[J]. Geophysical and Geochemical Exploration, 2024, 48(4):945-953.
|
[15] |
李家驹. 正镶白旗幅K-50-13 1/20万区域地质测量报告[R]. 内蒙古地质局区测队,1974.
|
[15] |
Li J J. Regional Geological Survey Report of the Zhengbaiqi Banner Area (K-50-13) 1∶200,000[R]. Regional Survey Team,Inner Mongolia Geological Bureau,1974.
|
[16] |
高树起, 余开彪. 内蒙古东乌旗乌兰陶勒盖东Ag多金属矿床地质特征及成因初探[J]. 世界有色金属, 2023(18):76-78.
|
[16] |
Gao S Q, Yu K B. Geological characteristics and genesis of the UlanTaoleGaiDong Ag polymetallic deposit in Dongwu Banner,Inner Mongolia[J]. World Nonferrous Metals, 2023(18):76-78.
|
[17] |
梁鸣, 罗先熔, 刘永胜, 等. 冀北小梨树沟地区土壤地球化学异常特征及其找矿预测[J]. 地质与勘探, 2022, 58(2):312-325.
|
[17] |
Liang M, Luo X R, Liu Y S, et al. Soil geochemical characteristics and prospecting prediction of the xiaolishugou area in northern Hebei Province[J]. Geology and Exploration, 2022, 58(2):312-325.
|
[18] |
杨自安, 徐国端, 邹林, 等. 化探与遥感信息在青海两兰地区找矿预测中的应用[J]. 地质与勘探, 2003, 39(6):42-45.
|
[18] |
Yang Z A, Xu G D, Zou L, et al. The application of geochemical exploration and remote sensing information to ore-prospecting prognosis in the Dulan-Wulan area,Qinghai province[J]. Geology and Prospecting, 2003, 39(6):42-45.
|
[19] |
翁望飞, 王德恩, 王敏. 安徽省休宁—歙县地区水系沉积物地球化学特征及找矿远景[J]. 矿物岩石地球化学通报, 2018, 37(5):932-942.
|
[19] |
Weng W F, Wang D E, Wang M. Geochemical characteristics of stream sediments and prospectivity of the Xiuning-Shexian area,Anhui Province[J]. Bulletin of Mineralogy,Petrology and Geochemistry, 2018, 37(5):932-942.
|
[20] |
刘腾, 张敏, 王文. 广东龙门平陵径—大坑迳地区土壤地球化学特征及找矿前景[J]. 矿产勘查, 2023, 14(12):2403-2414.
|
[20] |
Liu T, Zhang M, Wang W. Soil geochemical characteristics and prospecting prospects of PinglingjingDakengjing area in Longmen,Guangdong Province[J]. Mineral Exploration, 2023, 14(12):2403-2414.
|
[21] |
王飞, 王铎道, 刘战鹏, 等. 冀北老虎沟门地区土壤地球化学异常特征及找矿潜力[J]. 矿产勘查, 2023, 14(7):1174-1183.
|
[21] |
Wang F, Wang D D, Liu Z P, et al. Secondary halo characteristics and prospecting potential of Laohugoumen area in northern Hebei Province[J]. Mineral Exploration, 2023, 14(7):1174-1183.
|
[22] |
范宗福, 徐沛斌, 魏万鸿, 等. 甘肃北山斜沟—红柳丘井地区土壤地球化学特征及找矿远景[J]. 黄金, 2024, 45(6):77-84.
|
[22] |
Fan Z F, Xu P B, Wei W H, et al. Soil geochemical characteristics and mineral exploration prospects in Xiegou-Hongliuqiujing Area,Beishan,Gansu Province[J]. Gold, 2024, 45(6):77-84.
|
[23] |
迟清华, 鄢明才. 应用地球化学元素丰度数据手册[M]. 北京: 地质出版社, 2007.
|
[23] |
Chi Q H, Yan M C. Handbook of elemental abundance for applied geochemistry[M]. Beijing: Geological Publishing House, 2007.
|
[24] |
臧金生, 王东晓, 赵瑞强. 化探异常定量评价[J]. 物探与化探, 2014, 38(6):1114-1118.
|
[24] |
Zang J S, Wang D X, Zhao R Q. Quantitative evaluation of geochemical anomalies[J]. Geophysical and Geochemical Exploration, 2014, 38(6):1114-1118.
|
[25] |
蒋敬业. 应用地球化学[M]. 武汉: 中国地质大学出版社, 2006.
|
[25] |
Jiang J Y. Applied geochemistry[M]. Wuhan: China University of Geosciences Press, 2006.
|
[26] |
袁和, 罗先熔, 李武毅, 等. 西藏邦卓玛地区土壤地球化学特征及找矿预测[J]. 地质与勘探, 2017, 53(3):472-481.
|
[26] |
Yuan H, Luo X R, Li W Y, et al. Geochemical characteristics of soil and prospecting prediction of the Bangzhuoma Region,Tibet[J]. Geology and Exploration, 2017, 53(3):472-481.
|
[27] |
赵欣怡, 罗先熔, 杨笑笑, 等. 河南洛宁石龙山金多金属矿预查区土壤地球化学特征及找矿远景分析[J]. 矿物岩石地球化学通报, 2020, 39(4):768-778.
|
[27] |
Zhao X Y, Luo X R, Yang X X, et al. Soil geochemical characteristics and prospecting potential analysis of the Shilongshan Au-polymetallic prospecting area,Luoning County,Henan Province[J]. Bulletin of Mineralogy,Petrology and Geochemistry, 2020, 39(4):768-778.
|
[28] |
史冬岩, 张玉鹏, 张坤, 等. 大兴安岭北东段森林沼泽区地球化学找矿方法研究:以黑龙江省二道坎村银多金属矿区为例[J]. 西北地质, 2024, 57(2):107-120.
|
[28] |
Shi D Y, Zhang Y P, Zhang K, et al. Study on geochemical prospecting methods in forest swamp area of northeast daxing'an mountains:Example from erdaokan silver polymetallic mine area in Heilongjiang Province[J]. Northwestern Geology, 2024, 57(2):107-120.
|
[29] |
冯博鑫, 徐多勋, 张宏宇, 等. 基于最小数据集的周至地区土壤重金属地球化学特征及成因分析[J]. 西北地质, 2023, 56(1):284-292.
|
[29] |
Feng B X, Xu D X, Zhang H Y, et al. Geochemical characteristic of heavy metal in Zhouzhi area and analysis of their causes based on minimum data set[J]. Northwestern Geology, 2023, 56(1):284-292.
|
[30] |
Konstantinov M M, Strujkov S F. Application of indicator halos (signs of ore remobilization) in exploration for blind gold and silver deposits[J]. Journal of Geochemical Exploration, 1995, 54(1):1-17.
|
[31] |
刘刚, 罗先熔, 郑超杰, 等. 地电化学集成技术在藏南姐纳各普金多金属矿区的找矿预测研究[J]. 矿物岩石地球化学通报, 2018, 37(5):894-902.
|
[31] |
Liu G, Luo X R, Zheng C J, et al. A study of geo-electrochemical integration technology for prospecting mineral resources in the jienagepu Au polymetallic ore field,Shanan City,Tibet,China[J]. Bulletin of Mineralogy,Petrology and Geochemistry, 2018, 37(5):894-902.
|
[32] |
张善明, 冯罡, 张建, 等. 运用土壤地球化学寻找深部矿体的原理及方法[J]. 地质与勘探, 2011, 47(6):1114-1123.
|
[32] |
Zhang S M, Feng G, Zhang J, et al. Principle and methods to search for ore bodies at depth using soil geochemistry[J]. Geology and Exploration, 2011, 47(6):1114-1123.
|
[33] |
魏浩, 徐九华, 刘振刚, 等. 内蒙古凉城县草几坝一带土壤化探的数学地质分析[J]. 地质与勘探, 2011, 47(3):473-482.
|
[33] |
Wei H, Xu J H, Liu Z G, et al. Analysis of mathematical geology for soil geochemistry in the caojiba area of Liangcheng County,Inner Mongolia[J]. Geology and Exploration, 2011, 47(3):473-482.
|
[34] |
黎译阳, 罗先熔, 李世铸, 等. 地质—地球化学在广西岩桃金矿区的找矿研究[J]. 黄金科学技术, 2012, 20(6):15-20.
|
[34] |
Li Y Y, Luo X R, Li S Z, et al. The prospecting study of using geology and geochemistry in yantao gold mine,Guangxi Province[J]. Gold Science and Technology, 2012, 20(6):15-20.
|
[35] |
张善明, 兰生科, 贺中银, 等. 内蒙古北山额勒根乌兰乌拉一带土壤测量地球化学特征及找矿方向[J]. 现代地质, 2018, 32(4):655-666.
|
[35] |
Zhang S M, Lan S K, He Z Y, et al. Soil geochemical characteristics and prospecting direction in elegenwulanwula area of Beishan district,Inner Mongolia[J]. Geoscience, 2018, 32(4):655-666.
|
[36] |
Junaid K, Yao H Z, Chen K X, et al. Geochemical prospecting of polymetallic mineralization in Gimbi-Nejo area,West Ethiopia[J]. Ore Geology Reviews, 2022,149:105117.
|
[37] |
衮民汕, 吕新彪, 李光春, 等. 分区标准化与多元统计分析在浅覆盖区地球化学勘查中的应用——以大兴安岭某区1∶5万土壤地球化学调查为例[J]. 矿物学报, 2023, 43(1):112-124.
|
[37] |
Gun M S, Lyu X B, Li G C, et al. The application of the zoning standardization and multivariate statistical analysis for the geochemical exploration in the shallow overburden area:A case study of the 1∶50,000 soil geochemical survey in an area within the Daxing'anling Mountains,China[J]. Acta Mineralogica Sinica, 2023, 43(1):112-124.
|
[38] |
Liu Y, Xia Q L, Duan J H, et al. Geochemical anomalies of critical metals in the eastern Kunlun Orogenic Belt,China:Implications for nickel and cobalt mineral exploration[J]. Ore Geology Reviews, 2024,171:106168.
|
[39] |
牟妮妮, 孙祥, 万修权. 西藏米拉山地区化探异常特征与找矿预测[J]. 地质通报, 2020, 39(8):1182-1190.
|
[39] |
Mou N N, Sun X, Wan X Q. Geochemical anomaly characteristics and mineral potential mapping in Milashan area of Tibet[J]. Geological Bulletin of China, 2020, 39(8):1182-1190.
|
[40] |
樊会民, 安兴, 张嘉声, 等. 陕西省秦巴地区金元素找矿预测区划分及其地球化学特征[J]. 物探与化探, 2018, 42(4):682-688.
|
[40] |
Fan H M, An X, Zhang J S, et al. Division of gold element prospecting area in Qinba region of Shaanxi Province and its geochemical characteristics[J]. Geophysical and Geochemical Exploration, 2018, 42(4):682-688.
|
[1] |
ZHAO Xiao-Yuan, YANG Zhong-Fang, CHENG Hui-Yi, MA Xu-Dong, WANG Jue, LI Zhi-Kun, WANG Chen, LI Ming-Hui, LEI Feng-Hua. Geochemical characteristics and ecological health-related ranges of Copper in soil in Huaying Mountain-Xicao in Linshui County, Sichuan Province[J]. Geophysical and Geochemical Exploration, 2022, 46(1): 238-249. |
[2] |
PANG Wen-Jing, CHEN Bei-Bei, ZHOU Tao, HUANG Rou-Rui, ZHOU Yun-Yun, GUO Fu-Sheng, WU Zhi-Chun, XIE Cai-Fu. A comparative study on polymetallic metallogenic characteristics of Xiangshan and Lengshuikeng ore fields[J]. Geophysical and Geochemical Exploration, 2021, 45(6): 1416-1424. |
|
|
|
|