|
|
Experiments and effects on prospecting for concealed sandstone-type uranium deposits in a gobi desert region using the dynamic geogas method with adjustable efficiency |
LIU Guo-An1( ), ZHOU Si-Chun1( ), LIU Xiao-Hui1, LI Sheng-Fu2, ZHANG Ming-Zheng2, QIN Ming-Kuan3, XU Qiang3, WANG Guang-Xi1, HU Bo1 |
1. Applied Nuclear Technology in Geosciences Key Laboratory of Sichuan Province,Chengdu University of Technology, Chengdu 610059, China 2. Geologic Party No. 216, CNNC, Urumqi 830011, China 3. Beijing Research Institute of Uranium Geology, Beijing 100029, China |
|
|
Abstract Experiments on prospecting for concealed sandstone-type uranium deposits using the dynamic geogas method were conducted in a gobi desert region by deploying a survey line in each known sandstone-type uranium deposit and uranium ore occurrence. The results indicate that the dynamic geogas sampling technology with adjustable efficiency detected geogas anomaly zones above all known concealed sandstone-type uranium deposits. These zones were characterized by multiple adjacent anomaly peaks composed primarily of uranium (U) and multiple associated (paragenetic) elements, with widths approaching those of the surface projections in a range from the ore bodies with a burial depth of approximately 50 m to the boundaries of the ore bodies' overturning ends. Therefore, the geogas anomaly zones and their widths serve as important ore-prospecting indicators for concealed sandstone-type uranium deposits. The relationships of captured geogas anomalies with factors such as the depths and grades of ore bodies in the experimental area confirm that the dynamic geogas method with adjustable efficiency can detect concealed sandstone-type uranium deposits at depths exceeding 756.4 m. The relationships also reveal that the amplitude of U geogas anomalies increases with the ore body grade and that the spacing between geogas detection points on the profile for sandstone-type uranium deposits should not exceed 50 m. The experiment corroborates that the geogas method is feasible and effective in detecting concealed sandstone-type uranium deposits in a gobi desert region.
|
Received: 23 May 2024
Published: 22 July 2025
|
|
|
|
|
|
Location (a) and geological characteristics (b) of the study area 1—Quaternary; 2—Anju'an Group; 3—Kiziloyi Group; 4—Bashibulake Group; 5—Ulagan Group; 6—Karatal Group; 7—Zimugen Group; 8—Altash Group; 9—Yingjisha Group; 10—the fifth lithological segment of the Kizilsu Group; 11—the fourth lithological segment of the Kizilsu Group; 12—the third lithological segment of the Kizilsu Group; 13—the second lithological segment of the Kizilsu Group; 14—the first lithological segment of the Kizilsu Group; 15—Aksu Group of the Great Wall System; 16—oxidation zone Ⅰ; 17—oxidation zone Ⅱ; 18—oxidation zone Ⅲ; 19—stratum boundary; 20—industrial ore holes, mineralized holes, and non mineralized holes; 21—uranium deposits/points; 22—geogas test line
|
|
Structural diagram of double trap series dynamic geogas sampling device with adjustable efficiency
|
测点/测线 | 7/A | 8/A | 13/A | 3/B | 15/B | 平均值 | 基本测量值/ (μg·L-1) | 0.036 | 0.067 | 0.043 | 0.049 | 0.041 | | 检查测量/ (μg·L-1) | 0.042 | 0.050 | 0.057 | 0.050 | 0.045 | | 对比误差/% | 7.7 | 14.5 | 14.0 | 1.0. | 4.7 | 8.4 |
|
Comparison table between the basic measurement and the inspection measurement of U in the feasibility test
|
异常区位置 | 背景 值 | 标准 差 | 异常 下限 | 异常区 U均值 | U异常 峰均值 | U异常峰 极大值 | A测线325~1400 m | 0.050 | 0.017 | 0.067 | 0.080 | 0.168 | 0.246 | B测线500~1320 m | 0.053 | 0.078 | 0.086 |
|
Statistics of U element parameters in geogas test of sections A and B μg·L-1
|
元素 | U | Th | K | Zn | Pb | Cu | Mo | Mn | 异常下限/(μg·L-1) | 0.067 | 0.04 | 390 | 155 | 4.10 | 8.60 | 0.25 | 11.0 | 元素 | Ti | Cr | Co | Nb | Li | Rb | La | Sc | 异常下限/(μg·L-1) | 5.85 | 2.10 | 0.16 | 0.016 | 2.05 | 0.75 | 0.15 | 0.29 | 元素 | Sb | W | V | Y | Zr | Nd | Sr | Fe | 异常下限/(μg·L-1) | 3.04 | 0.04 | 0.62 | 0.08 | 3.51 | 0.18 | 3.85 | 1250 |
|
Statistics of the lower limit of anomalies for the elements used to compile the results of the geogas survey
|
|
Profile map of U, Th, K, Zn, Pb, Cu, Mo and Mn elements of geogas test on the A survey line 1—Quaternary; 2—the fifth lithological segment of the Lower Cretaceous Kizilsu Group; 3—the fourth lithological segment of the Lower Cretaceous Kizilsu Group; 4—the third lithological segment of the Lower Cretaceous Kizilsu Group; 5—the second lithological segment of the Lower Cretaceous Kizilsu Group; 6—the first lithological segment of the Lower Cretaceous Kizilsu Group; 7—middle Proterozoic Aksu Group; 8—the integrate boundaries, angular uncon-formity bounidaries; 9—oxidation zone; 10—industrial ore bodies, mineralized bodies, abnormal bodies; 11—borehole number,depth; 12—geogas survey profile
|
|
Profile map of U, Th, K, Zn, Pb, Cu, Mo and Mn elements of geogas test on the B survey line 1—Quaternary; 2—the fifth lithological segment of the Lower Cretaceous Kizilsu Group; 3—the fourth lithological segment of the Lower Cretaceous Kizilsu Group; 4—the third lithological segment of the Lower Cretaceous Kizilsu Group; 5—the second lithological segment of the Lower Cretaceous Kizilsu Group; 6—the first lithological segment of the Lower Cretaceous Kizilsu Group; 7—middle Proterozoic Aksu Group; 8—the integrate boundaries, angular uncon-formity bounidaries; 9—oxidation zone; 10—industrial ore bodies, mineralized bodies, abnormal bodies; 11—borehole number, depth; 12—lower limit of U anomaly for geogas survey; 13—U anomaly number for geogas survey; 14—geogas survey profile
|
|
Profile map of Ti, Cr, Co, Nb, Li, Rb, La and Sc elements of geogas test on the A survey line 1—Quaternary; 2—the fifth lithological segment of the Lower Cretaceous Kizilsu Group; 3—the fourth lithological segment of the Lower Cretaceous Kizilsu Group; 4—the third lithological segment of the Lower Cretaceous Kizilsu Group; 5—the second lithological segment of the Lower Cretaceous Kizilsu Group; 6—the first lithological segment of the Lower Cretaceous Kizilsu Group; 7—middle Proterozoic Aksu Group; 8—the integrate boundaries,angular unconformity boundaries; 9—oxidation zone; 10—industrial ore bodies, mineralized bodies, abnormal bodies; 11—borehole number,depth; 12—geogas survey profile
|
|
Profile map of Sb, W, V, Y, Zr, Nd, Sr and Fe elements of geogas test on the A survey line 1—Quaternary; 2—the fifth lithological segment of the Lower Cretaceous Kizilsu Group; 3—the fourth lithological segment of the Lower Cretaceous Kizilsu Group; 4—the third lithological segment of the Lower Cretaceous Kizilsu Group; 5—the second lithological segment of the Lower Cretaceous Kizilsu Group; 6—the first lithological segment of the Lower Cretaceous Kizilsu Group; 7—middle Proterozoic Aksu Group; 8—the integrate boundaries,angular unconformity boundaries; 9—oxidation zone; 10—industrial ore bodies, mineralized bodies, abnormal bodies; 11—borehole number,depth; 12—geogas survey profile
|
[1] |
聂逢君, 杨舒琪, 封志兵, 等. 隆起对砂岩型铀矿成矿的控制及找矿启示[J]. 地球学报, 2024, 45(3):265-277.
|
[1] |
Nie F J, Yang S Q, Feng Z B, et al. Control of uplift on sandstone-type uranium mineralization and its prospecting enlightenment[J]. Acta Geoscientica Sinica, 2024, 45(3):265-277.
|
[2] |
封志兵, 聂冰锋, 聂逢君, 等. 地球物理方法在砂岩型铀矿勘查中的应用进展[J]. 物探与化探, 2021, 45(5):1179-1188.
|
[2] |
Feng Z B, Nie B F, Nie F J, et al. Application progress of geophysical methods in exploration of sandstone-type uranium deposit[J]. Geophysical and Geochemical Exploration, 2021, 45(5):1179-1188.
|
[3] |
周四春, 刘晓辉, 童纯菡, 等. 地气测量技术及在隐伏矿找矿中的应用研究[J]. 地质学报, 2014, 88(4):736-754.
|
[3] |
Zhou S C, Liu X H, Tong C H, et al. Application research of geogas survey in prospecting concealed ore[J]. Acta Geologica Sinica, 2014, 88(4):736-754.
|
[4] |
Tong C H, Li J C, Ge L Q, et al. Experimental observation of the nano-scale particles in geogas matters and its geological significance[J]. Science in China Series D:Earth Sciences, 1998, 41(3):325-329.
|
[5] |
李盛富, 陈洪德, 蔡根庆, 等. 巴什布拉克铀矿床物质成分[J]. 矿物学报, 2015, 35(3):365-372.
|
[5] |
Li S F, Chen H D, Cai G Q, et al. Material composition in bashibulake uranium deposit[J]. Acta Mineralogica Sinica, 2015, 35(3):365-372.
|
[6] |
李炳谦, 张明正, 王守玉, 等. 塔里木盆地喀什凹陷巴什布拉克矿床特征与铀成矿[J]. 铀矿地质, 2023, 39(4):606-617.
|
[6] |
Li B Q, Zhang M Z, Wang S Y, et al. Characteristics of Bashibulake deposit and uranium metallization in Kashi Sag,Tarim Basin[J]. Uranium Geology, 2023, 39(4):606-617.
|
[7] |
李盛富, 王果. 喀什凹陷中生代以来的构造事件对中——下侏罗统铀矿化的影响[J]. 世界核地质科学, 2008, 25(1):7-12.
|
[7] |
Li S F, Wang G. Influences of tectonic events since Mesozoic on uranium mineralization in Middle-Lower Jurassic of Kashgar Sag[J]. World Nuclear Geoscience, 2008, 25(1):7-12.
|
[8] |
韩凤彬, 陈正乐, 陈柏林, 等. 新疆喀什凹陷巴什布拉克铀矿流体包裹体及有机地球化学特征[J]. 中国地质, 2012, 39(4):985-998.
|
[8] |
Han F B, Chen Z L, Chen B L, et al. Fluid inclusion and organic geochemistry characteristics of the Bashibulake uranium deposit in Kashi Sag,Xinjiang[J]. Geology in China, 2012, 39(4):985-998.
|
[9] |
刘念, 秦明宽, 郭强, 等. 塔里木盆地中下侏罗统砂岩型铀矿成矿条件分析[J]. 铀矿地质, 2022, 38(5):843-855.
|
[9] |
Liu N, Qin M K, Guo Q, et al. Metallogenic conditions of sandstone type uranium deposits in the middle and lower Jurassic of Tarim Basin[J]. Uranium Geology, 2022, 38(5):843-855.
|
[10] |
刘正义, 许强, 刘红旭, 等. 巴什布拉克含铀地沥青铀矿床矿化特征和成矿机理[J]. 西北地质, 2021, 54(1):109-124.
|
[10] |
Liu Z Y, Xu Q, Liu H X, et al. Mineralization characteristics and metallogenic mechanism of bashibulake uranium-bearing asphalt uranium deposit[J]. Northwestern Geology, 2021, 54(1):109-124.
|
[11] |
李炳谦, 王强强, 张明正, 等. 喀什凹陷下白垩统克孜勒苏群铀矿化成因浅析[J]. 新疆地质, 2022, 40(2):246-249.
|
[11] |
Li B Q, Wang Q Q, Zhang M Z, et al. Cause analysis of uranium mineralization in lower Cretaceous Kizilsu Group in Kashi depression[J]. Xinjiang Geology, 2022, 40(2):246-249.
|
[12] |
Xie Y, Peng X H, Wang Y Q. Application research for geogas prospecting in the Xinqu gold deposit,Gansu,China[J]. Acta Geologica Sinica-English Edition, 2014, 88(S2):1307-1308.
|
[13] |
童纯菡, 李巨初. 地气测量寻找深部隐伏金矿及其机理研究[J]. 地球物理学报, 1999, 42(1):135-142.
|
[13] |
Tong C H, Li J C. Geogas prospection and its mechanism in the search for deep-seated or concealed gold deposits[J]. Chinese Journal of Geophysics, 1999, 42(1):135-142.
|
[14] |
刘晓辉, 周四春, 童纯菡, 等. 提高地气探测灵敏度的方法[J]. 物探与化探, 2012, 36(6):1064-1067.
|
[14] |
Liu X H, Zhou S C, Tong C H, et al. The method and technique for improving the detection sensitivity of dynamic geogas survey[J]. Geophysical and Geochemical Exploration, 2012, 36(6):1064-1067.
|
[15] |
刘英俊, 曹励明. 元素地球化学导论[M]. 北京: 地质出版社,1987.
|
[15] |
Liu Y J, Cao L M. Introduction to elemental geochemistry[M]. Beijing: Geological Publishing House,1987.
|
[16] |
费业泰. 误差理论与数据处理(6版)[M]. 北京: 机械工业出版社, 2010.
|
[16] |
Fei Y T. Error theory and data processing(6th,Edition)[M]. Beijing: China Machine Press, 2010.
|
[17] |
周四春, 王登红, 刘晓辉, 等. 关键矿产深部找矿的技术方法与示范[M]. 北京: 地质出版社. 2023.
|
[17] |
Zhou S C, Wang D H, Liu X H, et al. Technical methods and demonstrations of deep prospecting of critical minerals[M]. Beijing: Geological Publishing House, 2023.
|
[1] |
ZHOU Si-Chun, LIU Xiao-Hui, QIN Ming-Kuan, LIU Guo-An, GUO Qiang, XU Qiang, HU Bo, WANG Guang-Xi. A geogas prospecting technology suitable for the exploration of concealed sandstone-type uranium deposits in desert areas[J]. Geophysical and Geochemical Exploration, 2025, 49(3): 529-537. |
[2] |
SHI Yu-Jiao, ZHANG Jiang-Bo, ZHONG Song-Shu, TIAN Ke-Nan, XI Guo-Qing, ZHOU Qi-Ming, ZHAO Li-Ke, WANG Jian-Chao, YANG Fang-Fang. Structural superimposed halo anomalies and prospecting prediction of Jinchanshan gold deposit, Harqin Banner, Inner Mongolia, China[J]. Geophysical and Geochemical Exploration, 2025, 49(3): 569-577. |
|
|
|
|