|
|
A prediction model of the industrial components and calorific values of coal seams based on multi-source log data |
YU Yong-Peng1( ), ZHANG Guang-Bing1( ), HUANG Zi-Jun2, YAN Jian-Bo1, WANG Jia-Wen1, YANG Yan-Cheng1, MAO Xing-Jun1 |
1. Coal Geology Bureau of Ningxia Hui Autonomous Region, Yinchuan 750002, China 2. Ningxia Coal Exploration and Engineering Co., Ltd.,Yinchuan 750002, China |
|
|
Abstract The industrial components and calorific values of coal seams serve as an important basis for the evaluation of coal quality, and the prediction of them based on log data allows for overcoming the deficiency in the experimental analysis of coal core samples. This study collected data from digital logs and coal quality analysis at different stages (e.g., detailed survey and exploration) of a coal field in Ningxia. Based on the investigation of the coal quality and log responses, as well as statistical analysis, this study developed the methods for extracting log response characteristics, establishing sample sets, and processing data and established a deep neural network-based prediction model. Then, it confirmed the validity of the prediction model by comparing the predicted results of testing data with the results from the experimental analysis.
|
Received: 08 November 2022
Published: 26 February 2024
|
|
|
|
|
|
The characteristic map of coal quality of mineable coal seams in the study area
|
|
The linear correlation diagram of coal quality data in the study area
|
|
The logging response characteristics of coal seams in the study area
|
|
The amplitude frequency histogram of typical logging curves in the study area
|
测井方法 | 自然伽马/API | 短源距人工伽马/CPS | 长源距人工伽马/CPS | 三侧向视电阻率/(Ω·m) | 对比内容 | | | | | | | | | 详查阶段 | | | | | | | | | 勘探阶段 | | | | | | | | |
|
The statistical table of amplitude characteristics of typical logging curves in the study area
|
数据源 | 初始样本集 样本数量/个 | 剔除离群点后 样本数量/个 | 详查阶段 | 482 | 453 | 勘探阶段 | 521 | 485 | 合计 | 1003 | 938 |
|
The statistical table of sample quantity of sample set
|
|
The linear correlation coefficient heat diagram of normalized logging data and the industrial components and calorific value of coal in the study area
|
|
The deep neural network structure diagram
|
预测参数 | 优化算法 | 损失函数 | 批大小 | 训练次数 | Mad | Adam | mae | 16 | 2000 | Ad | Adam | mae | 8 | 2000 | Vdaf | Adam | mae | 8 | 2000 | FCd | Adam | mae | 8 | 2000 | Qgr,d | Adam | mae | 8 | 2000 |
|
The main configuration parameters of deep neural network
|
参数 | 预测方程 | 灰分 | Ad=-0.2256×FCd-1.9919×Qgr,d+79.1617 | 挥发分 | Vdaf=-0.3574×FCd-0.0162×Qgr,d+54.2128 |
|
The multivariate linear regression model for predicting Ad and Vdaf in coal seams
|
|
The comparison diagram of prediction results of test set samples and analysis results of coal core samples
|
煤质参数 | 样品分析结果 ( ) | 预测结果 ( ) | 均方根 误差/% | 平均绝 对误差/% | 平均相对 误差/% | 备注 | Mad/% | | | 2.14 | 1.62 | 18.34 | | Ad/% | | | 3.06 | 2.41 | 26.89 | 分步预测 | | 3.61 | 2.62 | 29.55 | | FCd/% | | | 3.66 | 2.88 | 5.08 | | Vdaf/% | | | 2.90 | 2.30 | 6.89 | 分步预测 | | 3.42 | 2.58 | 7.78 | | Qgr,d/(MJ·kg-1) | | | 1.18 | 0.90 | 3.14 | |
|
The list of errors in comparison between prediction results and sample analysis results in the test set
|
[1] |
杨孟达. 煤矿地质学[M]. 北京: 煤炭工业出版社, 2000.
|
[1] |
Yang M D. Coal mining geology[M]. Beijing: China Coal Industry Publishing House, 2000.
|
[2] |
杨东根, 范宜仁, 邓少贵, 等. 利用测井资料评价煤层煤质及含气量的方法研究——以和顺地区为例[J]. 勘探地球物理进展, 2010, 33(4):262-265,227.
|
[2] |
Yang D G, Fan Y R, Deng S G, et al. Logging evaluation for coal quality and gas content:A case study in Heshun region[J]. Progress in Exploration Geophysics, 2010, 33(4):262-265,227.
|
[3] |
钱玉萍, 张国华. 煤层工业组分的测井评价方法研究及应用[J]. 海洋石油, 2021, 41(3):48-51,71.
|
[3] |
Qian Y P, Zhang G H. Research and application of logging evaluation method for industrial components of coalbed[J]. Offshore Oil, 2021, 41(3):48-51,71.
|
[4] |
孟召平, 朱绍军, 贾立龙, 等. 煤工业分析指标与测井参数的相关性及其模型[J]. 煤田地质与勘探, 2011, 39(2):1-6.
|
[4] |
Meng Z P, Zhu S J, Jia L L, et al. Relationship between approximate analysis of coal and log parameters and its models[J]. Coal Geology & Exploration, 2011, 39(2):1-6.
|
[5] |
邵先杰, 孙玉波, 孙景民, 等. 煤岩参数测井解释方法——以韩城矿区为例[J]. 石油勘探与开发, 2013, 40(5):559-565.
|
[5] |
Shao X J, Sun Y B, Sun J M, et al. Logging interpretation of coal petrologic parameters:A case study of Hancheng Mining Area[J]. Petroleum Exploration and Development, 2013, 40(5):559-565.
|
[6] |
潘和平, 黄智辉. 煤层煤质参数测井解释模型[J]. 现代地质, 1998, 12(3):447-451.
|
[6] |
Pan H P, Huang Z H. Log interpretation model of determining coalbed coal quality parameters[J]. Geoscience, 1998, 12(3):447-451.
|
[7] |
刘同庆. 煤质工业分析测井解释及三维建模研究[J]. 煤炭技术, 2021, 40(9):71-75.
|
[7] |
Liu T Q. Study on well logging interpretation and 3D modeling for coal quality industry analysis[J]. Coal Technology, 2021, 40(9):71-75.
|
[8] |
高鉴东, 傅雪海, 刘爱华, 等. 沁水盆地和顺15#煤层煤质参数的测井响应预测[J]. 西安科技大学学报, 2015, 35(1):50-55.
|
[8] |
Gao J D, Fu X H, Liu A H, et al. Logging response prediction of 15# coalbed coal quality parameters in Heshun area Qingshui Basin[J]. Journal of Xi’an University of Science and Technology, 2015, 35(1):50-55.
|
[9] |
吴蒙, 秦云虎, 王晓青, 等. 任家庄煤矿煤层煤质测井响应及其预测模型[J]. 吉林大学学报:地球科学版, 2022, 52(2):633-643.
|
[9] |
Wu M, Qin Y H, Wang X Q, et al. Log response of coal quality and its prediction model in Renjiazhuang Coal Mine[J]. Journal of Jilin University:Earth Science Edition, 2022, 52(2):633-643.
|
[10] |
王安龙, 孙小琴, 谢学恒, 等. 利用测井资料计算煤层含气量及工业组分方法研究[J]. 油气藏评价与开发, 2011, 1(s1):69-73.
|
[10] |
Wang A L, Sun X Q, Xie X H, et al. The method of calculating gas content and industrial components of coalbed by using well logging data[J]. Reservoir Evaluation and Development, 2011, 1(s1):69-73.
|
[11] |
潘和平, 刘国强. 应用BP神经网络预测煤质参数及含气量[J]. 地球科学, 1997, 22(2):210-214.
|
[11] |
Pan H P, Liu G Q. Applying back-propagation artificial Neural Networks to predict coal quality parameters and coalbed gas content[J]. Earth Science, 1997, 22(2):210-214.
|
[12] |
陈钢花, 董维武. 遗传神经网络在煤质测井评价中的应用[J]. 测井技术, 2011, 35(2):171-175.
|
[12] |
Chen G H, Dong W W. Application of genetic neural network to coal quality evaluation based on log data[J]. Well Logging Technology, 2011, 35(2):171-175.
|
[13] |
朱吉昌. 测井曲线小波分析方法的改进及其在地层对比中的应用[D]. 北京: 中国地质大学(北京), 2016.
|
[13] |
Zhu J C. Improvement of wavelet transform for well log curve and application to stratigraphic correlation[D]. Beijing: China University of Geosciences (Beijing), 2016.
|
[14] |
陈世达. 黔西多煤层煤层气储渗机制及合层开发技术对策[D]. 北京: 中国地质大学(北京), 2020.
|
[14] |
Chen S D. Permeable-storage mechanism and the development technical countermeasures for coalbed methane in multi-seams in Western Guizhou[D]. Beijing: China University of Geosciences (Beijing), 2020.
|
[15] |
覃瑞东, 潘和平, 郭博, 等. 基于Hilbert-Huang变换的测井曲线自动分层方法[J]. 地质科技情报, 2017, 36(2):258-264.
|
[15] |
Qin R D, Pan H P, Guo B, et al. Automatic stratification of well logging curves with Hilbert-Huang Transform[J]. Geological Science and Technology Information, 2017, 36(2):258-264.
|
[16] |
滕俊. 利用成像测井资料提高常规测井薄层分辨率的方法研究[D]. 荆州: 长江大学, 2014.
|
[16] |
Teng J. Method study on using imaging logging data to improve the conventional logging resolution in thin layers share[D]. Jingzhou: Yangtze University, 2014.
|
[17] |
王欣, 潘雨舟. 薄层电阻率的测井响应校正方法研究[J]. 油气藏评价与开发, 2015, 5(4):55-57.
|
[17] |
Wang X, Pan Y Z. Research on log response correction method of sheet resistivity[J]. Reservoir Evaluation and Development, 2015, 5(4):55-57.
|
[18] |
张兴涛, 王艳, 李伟峰. 测井数据井眼干扰误差校正方法[J]. 延安大学学报:自然科学版, 2015, 34(2):39-41.
|
[18] |
Zhang X T, Wang Y, Li W F. Correction method of borehole interference error in logging data[J]. Journal of Yanan University:Natural Science Edition, 2015, 34(2):39-41.
|
[19] |
田志杰. 测井资料环境校正、标准化处理程序设计与实现[D]. 北京: 中国地质大学(北京), 2006.
|
[19] |
Tian Z J. Design and implementation of environmental correction and standardization processing program for logging data[D]. Beijing: China University of Geosciences(Beijing), 2006.
|
[20] |
吴国培, 张莹莹, 张博文, 等. 基于深度学习的中心回线瞬变电磁全区视电阻率计算[J]. 物探与化探, 2021, 45(3):750-757.
|
[20] |
Wu G P, Zhang Y Y, Zhang B W, et al. The calculation of full-region apparent resistivity of central loop TEM based on deep learning[J]. Geophysical and Geochemical Exploration, 2021, 45(3):750-757.
|
[21] |
王蓉, 熊杰, 刘倩, 等. 基于深度神经网络的重力异常反演[J]. 物探与化探, 2022, 46(2):451-458.
|
[21] |
Wang R, Xiong J, Liu Q, et al. Inversion of gravity anomalies based on a deep neural network[J]. Geophysical and Geochemical Exploration, 2022, 46(2):451-458.
|
[22] |
周楚天, 刘攀. 基于深度神经网络的水文频率分析[J]. 水文, 2022, 42(6):1-6.
|
[22] |
Zhou C T, Liu P. Hydrological frequency analysis based on deep neural networks[J]. Journal of China Hydrology, 2022, 42(6):1-6.
|
[23] |
Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786):504-507.
|
[24] |
余凯, 贾磊, 陈雨强, 等. 深度学习的昨天、今天和明天[J]. 计算机研究与发展, 2013, 50(9):1799-1804.
|
[24] |
Yu K, Jia L, Chen Y Q, et al. Deep learning:Yesterday,today,and tomorrow[J]. Journal of Computer Research and Development, 2013, 50(9):1799-1804.
|
[25] |
孙志军, 薛磊, 许阳明, 等. 深度学习研究综述[J]. 计算机应用研究, 2012, 29(8):2806-2810.
|
[25] |
Sun Z J, Xue L, Xu Y M, et al. Overview of deep learning[J]. Application Research of Computers, 2012, 29(8):2806-2810.
|
[26] |
周永章, 王俊, 左仁广, 等. 地质领域机器学习、深度学习及实现语言[J]. 岩石学报, 2018, 34(11):3173-3178.
|
[26] |
Zhou Y Z, Wang J, Zuo R G, et al. Machine learning,deep learning and Python language in field of geology[J]. Acta Petrologica Sinica, 2018, 34(11):3173-3178.
|
|
|
|