|
|
Advancements in research on geochemical exploration methods and technologies for mineral resources in overburden areas |
SUN Yue1,2( ), ZHANG Zhen-Yu1,2, FENG Bin1,2( ), YANG Shao-Ping1, WANG Zhi-Feng1,2 |
1. Key Laboratory of Geochemical Exploration, Ministry of Natural Resources,Institute of Geophysical and Geochemical Exploration, Langfang 065000, China 2. International Centre on Global-scale Geochemistry,United Nations Educational Scientific and Cultural Organization, Institute of Geophysical and Geochemical Exploration, Langfang 065000, China |
|
|
Abstract Following China's planning for ore prospecting in overburden areas, China's geochemical exploration researchers have conducted extensive research on the fundamental theories, methods, and technologies of geochemical exploration for overburden areas in the past decade. They achieved significant advances mainly in two aspects: (1) the research on the migration mechanism, occurrence state, and anomaly formation mechanism of elements in overburden areas; (2) advances in methods and technologies, including geoelectrochemistry, active state of elements, geogas, separation of micro-fine-sized soil particles, soil thermomagnetic composition, and integrated gas survey, as well as numerous experimental demonstrations. These advances represent continuous progress in the research on the fundamental theories, methods, and technologies of geochemical exploration for overburden areas, providing new geochemical methods and technologies for ore prospecting breakthroughs in overburden areas.
|
Received: 13 March 2023
Published: 23 January 2024
|
|
|
|
|
6] ">
|
Spatial variation of total Ag content and each phase content in soil before and after electrical extraction in the 5 exploration line of the Luokedun lead-zinc polymetallic mine[6]
|
参数 | U | Th | Mo | Pb | Cr | Cu | Gd | W | 处理后泡塑/10-9 | 2.01 | 1.60 | 8.00 | 100.00 | 330.00 | 55.00 | 0.50 | 4.00 | 未处理泡塑/10-9 | 6.74 | 8.07 | 15.00 | 410.00 | 690.00 | 210.00 | 4.91 | 10.60 | 处理后与处理前含量比/% | 29.82 | 19.83 | 53.33 | 24.39 | 47 83 | 26.19 | 10.18 | 37.74 | 研究区指示元素背景值/10-9 | 3.63 | 3.12 | 10.05 | | | | 1.03 | | 研究区指示元素异常下限/10-9 | 4.27 | 3.80 | 10.83 | | | | 1.19 | |
|
Comparison of trace elements content foam plastic before and after the pretreatment[3]
|
34] ">
|
Comparison of conventional soil and thermomagnetic components of a eolian sand covered area in Caijiaying experimental area[34]
|
39] ">
|
Contour map of He in Juhugeng in the Qilian Mountain[39]
|
[1] |
谢学锦, 王学求. 深穿透地球化学新进展[J]. 地学前缘, 2003, 10(1):225-238.
|
[1] |
Xie X J, Wang X Q. New advances in deep-penetrating geochemistry[J]. Earth Science Frontiers, 2003, 10(1):225-238.
|
[2] |
孙彬彬, 张学君, 刘占元, 等. 地电化学异常形成机理初探[J]. 物探与化探, 2015, 39(6):1183-1187.
|
[2] |
Sun B B, Zhang X J, Liu Z Y, et al. Apreliminary study of the formation mechanism of the geoelectric chemistry anomaly[J]. Geophysical and Geochemical Exploration, 2015, 39(6):1183-1187.
|
[3] |
张必敏. 小秦岭整装勘查山间盆地深部找矿地球化学技术研究成果总结报告[R]. 中国地质科学院地球物理地球化学勘查研究所, 2015.
|
[3] |
Zhang B M. Summary report on the research results of integrated exploration technique for deep ore geochemistry in mountain basins in Xiao Qin Mountains[R]. Institute of Geophysics and Geochemistry Exploration,Chinese Academy of Geological Sciences, 2015.
|
[4] |
唐世新. 东乌旗整装勘查区、地电化学方法技术研究应用成果总结报告[R]. 中国地质科学院地球物理地球化学勘查研究所, 2015.
|
[4] |
Tang S X. Summary report on the research and application of geoelectrochemical methods and techniques in the integrated exploration area of East Ujimqin Banner[R] .Institute of Geophysics and Geochemistry Exploration,Chinese Academy of Geological Sciences, 2015.
|
[5] |
谢淑云, 向武, 李方林. 《覆盖区弱异常形成机理研究与地球化学勘查》成果总结报告[R]. 中国地质大学(武汉), 2015.
|
[5] |
Xie S Y, Xiang W, Li F L. Summary report on research of the formation mechanism of weak anomaly in the covering area and geochemistry exploration[R] .China University of Geosciences (Wuhan), 2015.
|
[6] |
孙彬彬, 曾道明, 刘占元, 等. 风成砂覆盖区地电化学提取前后土壤中元素赋存状态变化研究[J]. 物探与化探, 2018, 42(3) :518-527.
|
[6] |
Sun B B, Zeng D M, Liu Z Y, et al. Variation of modes of occurrence of elements in soil before and after the geo-electrochemical extraction in eolian sand covered area[J]. Geophysical and Geochemical Exploration, 2018, 42(3):518-527.
|
[7] |
张必敏, 王学求, 徐善法, 等. 盆地金属矿穿透性地球化学勘查模型与案例[J]. 中国地质, 2016, 43(5):1697-1709.
|
[7] |
Zhang B M, Wang X Q, Xu S F, et al. Models and case history studies of deep-penetrating geochemical exploration for concealed depositsin basins[J]. Geology in China, 2016, 43(5):1697-1709.
|
[8] |
王勇, 王东升, 吴国东, 等. 地气测量方法在粤北长排花岗岩型铀矿勘查中的应用[J]. 铀矿地质, 2020, 36(4):302-310.
|
[8] |
Wang Y, Wang D S, Wu G D, et al. Application of geogas method in the exploration of granite-typeuranium deposit in Changpai Area of Northern Guangdong[J]. Uranium Geology, 2020, 36(4):302-310.
|
[9] |
Levitski A, Filanovski B, Bourenko T, et al. “Di-pole”CHIM:Concept and application[J]. Journal of Geochemical Exploration, 1996(57):101-114.
|
[10] |
孙彬彬, 刘占元, 周国华. 地电化学方法技术研究现状及发展趋势[J]. 物探与化探, 2015, 39(1):16-21.
|
[10] |
Sun B B, Liu Z Y, Zhou G H. Researchstatus and development trends for geoelectrochemical methods[J]. Geophysical and Geochemical Exploration, 2015, 39(1):16-21.
|
[11] |
黄学强, 罗先熔, 刘巍, 等. 凹陷盆地铜镍多金属矿床地电化学异常特征及找矿预测[J]. 物探与化探, 2013, 37(2):199-205.
|
[11] |
Huang X Q, Luo X R, Liu W, et al. Features of geo-electrochemical anomaly and copper-nickel prospecting prognosis in Hollow Basin[J]. Geophysical and Geochemical Exploration, 2013, 37(2):199-205.
|
[12] |
刘映东, 张必敏, 罗先熔. 地电化学在隐伏铜镍矿勘查中的应用及异常形成机理探讨[J]. 地质与勘探, 2017, 53(4):694-703.
|
[12] |
Liu Y D, Zhang B M, Luo X R. Mechanism of geoelectrochemistry anomalies and application to prospecting of buried Cu-Ni deposits[J]. Geology and Exploration, 2017, 53(4):694-703.
|
[13] |
孙彬彬, 张学君, 刘占元, 等. 地电化学异常形成机理初探[J]. 物探与化探, 2015, 39(6):1183-1187.
|
[13] |
Sun B B, Zhang X J, Liu Z Y, et al. A preliminary study of the formation mechanism of the geoelectric chemistry anomaly[J]. Geophysical and Geochemical Exploration, 2015, 39(6):1183-1187.
|
[14] |
李帅, 孙彬彬, 文美兰, 等. 内蒙古洛恪顿铅锌多金属矿区1∶5万地电化学测量试验[J]. 物探与化探, 2020, 44(3):514-522.
|
[14] |
Li S, Sun B B, Wen M L, et al. 1∶50 000 electro-geochemical survey in the Luokedun lead-zinc polymetallic deposit,Inner Mongolia[J]. Geophysical and Geochemical Exploration, 2020, 44(3):514-522.
|
[15] |
Mann A, Reimann C, De Caritat P, et al. Mobile Metal Ion analysis of European agriculturalsoils:Bioavailability,weathering,geogenic patterns and anthropo genic anomalies[J]. Geochemistry-Exploration Environment Anal ysis, 2015, 15:99-112.
|
[16] |
Wang X Q, Zhang B M, Lin X. Geochemical challenges of diverse regolith-covered terrains for mineral exploration in China[J]. Ore Geology Reviews, 2016, 73:417-431.
|
[17] |
徐善法, 刘汉彬, 王玮, 等. 深穿透地球化学方法在十红滩砂岩型铀矿中的试验研究[J]. 物探与化探, 2017, 41(2):189-193.
|
[17] |
Xu S F, Liu H B, Wang W, et al. An experimental study of deep penetration geochemical technology in the Shihongtan uranium deposit[J]. Geophysical and Geochemical Exploration, 2017, 41(2):189-193.
|
[18] |
姚文生. 元素活动态提取剂作用机理与实验条件研究[D]. 北京: 中国地质科学院, 2011.
|
[18] |
Yao W S. Leachingmechanism and conditions ofextractants on mobile formsof elements in soils[D]. Beijing: Chinese Academy of Geological, 2011.
|
[19] |
王翰, 向武, 于桑, 等. 超声波纳米提取测量法——一种覆盖区找矿新技术:在拜仁达坝铅锌矿区的实践[J]. 地质与勘探, 2018, 54(5):968-978.
|
[19] |
Wang H, Xiang W, Yu S, et al. A new method of ultrasonic nanoparticles extraction for geochemical exploration in the Bairendaba Mine of Inner Mongolia[J]. Geology and Exploration, 2018, 54(5):968-978.
|
[20] |
Kristiansson K, Malmqvsit L. Trace elements in the geogas andtheir relation to bedrock composition[J]. Geoexporation, 1987, 24:517-534.
|
[21] |
王学求, 张必敏, 刘雪敏. 纳米地球化学:穿透覆盖层的地球化学勘查[J]. 地学前缘, 2012, 19(3):101-112.
|
[21] |
Wang X Q, Zhang B M, Liu X M. Nanogeochemistry:Deep penetrating geochemical exploration through cover[J]. Earth Science Frontiers, 2012, 19(3):101-112.
|
[22] |
郭祥义, 叶荣, 鲁美, 等. 半干旱荒漠草原覆盖区地气测量方法研究——以内蒙古维拉斯托锌铜多金属矿床为例[J]. 地质与勘探, 2019, 55(3):789-800.
|
[22] |
Guo X Y, Ye R, Lu M, et al. Geogas measurement experiments in the semi-arid desert steppe:An example of the Weilasituo Zn-Cu polymetallic deposit in Inner Mongolia[J]. Geology and Exploration, 2019, 55(3):789-800.
|
[23] |
韩伟, 刘华忠, 王成文, 等. 哈密天宇铜镍矿地气测量地球化学特征及指示意义[J]. 物探与化探, 2019, 43(3):502-508.
|
[23] |
Han W, Liu H Z, Wang C W, et al. Geochemical characteristics and indication significance of seogas survey in the Tianyu Cu-Ni Deposit of Hami[J]. Geophysical and Geochemical Exploration, 2019, 43(3):502-508.
|
[24] |
蔺强强, 郑琪, 苏永红. 黄土覆盖区地气测量有效性评价——以甘肃省通渭县陈贾村地区为例[J]. 物探与化探, 2020, 44(3):533-539.
|
[24] |
Lin Q Q, Zheng Q, Su Y H. Effectiveness evaluation of ground geogas measurement survey in a loess-covered area:A case study of Chenjiacun area in Tongwei County,Gansu Province[J]. Geophysical and Geochemical Exploration, 2020, 44(3):533-539.
|
[25] |
Van G P W G, Kyser T K, Oates C J, et al. Tilland vegetation geochemistry at the Talbot VMS Cu-Zn prospect,Manitoba,Canada:Implications for mineral exploration[J]. Geochemistry-Exploration Environment Analysis, 2012, 12:67-86.
|
[26] |
张必敏, 王学求, 叶荣, 等. 土壤微细粒分离测量技术在黄土覆盖区隐伏金矿勘查中的应用及异常成因探讨[J]. 桂林理工大学学报, 2019, 39(2):301-310.
|
[26] |
Zhang B M, Wang X Q, Ye R, et al. Fine-grained soil prospecting method for mineral exploration in loesscoveredareas and discussion on the origin of geochemical anomalies[J]. Journal of Guilin University of Technology, 2019, 39(2):301-310.
|
[27] |
刘汉粮, 张必敏, 王学求, 等. 土壤微细粒测量地球化学模式的再现性与可对比性[J]. 物探与化探, 2018, 42(3):506-512.
|
[27] |
Liu H L, Zhang B M, Wang X Q, et al. The reproducibility and comparability of the fine particle soil survey geochemical patterns[J]. Geophysical and Geochemical Exploration, 2018, 42(3):506-512.
|
[28] |
鲁岳鑫, 张必敏, 刘汉粮, 等. 深穿透地球化学勘查技术对隐伏稀有金属矿的勘查指示:以甲基卡X03号隐伏锂矿脉技术试验为例[J]. 地质学报, 2023, 97(1):291-305.
|
[28] |
Lu Y X, Zhang B M, Liu H L, et al. The application of soil geochemical measurement method to the No.X03 ore deposit in Jiajika[J]. Acta Geologica Sinica, 2023, 97(1):291-305.
|
[29] |
胡树起, 马生明, 刘崇民, 等. 热磁技术方法条件实验及相关问题[J]. 物探与化探, 2011, 35(2):212-217.
|
[29] |
Hu S Q, Ma S M, Liu C M, et al. Experiments on technical conditions of the Thermomagnetic technology and some related problems[J]. Geophysical and Geochemical Exploration, 2011, 35(2):212-217.
|
[30] |
胡树起, 史长义, 马生明, 等. 热磁技术在覆盖区找矿中的应用[J]. 物探与化探, 2010, 34(5):622-626.
|
[30] |
Hu S Q, Shi C Y, Ma S M, et al. The application of thermomagnetic technique to ore prospecting in coverage area[J]. Geophysical and Geochemical Exploration, 2010, 34(5):622-626.
|
[31] |
唐世新, 马生明, 胡树起. 土壤磁性组分测量在干旱荒漠区找矿中的有效性探讨[J]. 矿产勘查, 2012, 3(6):804-810.
|
[31] |
Tang S X, Ma S M, Hu S Q. Application of soil magnetic component measurement technique in mineral prospecting in arid desert areas[J]. Mineral Exploration, 2012, 3(6):804-810.
|
[32] |
唐世新, 马生明, 李建军, 等. 新疆东天山地区磁性组分测量有效性研究[J]. 物探化探计算技术, 2014, 36(6):742-749.
|
[32] |
Tang S X, Ma S M, Li J J, et al. The availability discussion of magnetic material survey in dongtianshan,xinjiang[J]. Geophysical and Geochemical Exploration Computing Techniques, 2014, 36(6):742-749.
|
[33] |
唐世新, 李建军, 马生明. 内蒙古东部运积物覆盖区地球化学勘查方法对比[J]. 物探与化探, 2018, 42(3):499-505.
|
[33] |
Tang S X, Li J J, Ma S M. Optimum selection of geochemical exploration methods in areas covered by transported overburden,Eastern Inner Mongolia[J]. Geophysical and Geochemical Exploration, 2018, 42(3):499-505.
|
[34] |
唐世新, 李建军, 马生明, 等. 运积物覆盖区地球化学找矿方法——土壤热磁组分测量[J]. 物探与化探, 2019, 43(4):749-757.
|
[34] |
Tang S X, Li J J, Ma S M, et al. Thermomagnetic component measurement:A geochemical prospecting method for transported overburden region[J]. Geophysical and Geochemical Exploration, 2019, 43(4):749-757.
|
[35] |
智超, 张玉成, 陈玉峰. 汞气测量在铜陵矿集区胡村铜钼矿深部找矿中的试验[J]. 地质学刊, 2022, 46(3):313-319.
|
[35] |
Zhi C, Zhang Y C, Chen Y F. Experiment of mercury gas measurement in deep prospecting of Hucun villagecopper-molybdenum deposit,Tongling ore concentration area[J]. Journal of Geology, 2022, 46(3):313-319.
|
[36] |
万卫, 陈振亚, 程志中, 等. CO2气体测量方法在低山丘陵区隐伏矿勘查的试验研究[J]. 物探与化探, 2019, 43(1):70-76.
|
[36] |
Wan W, Chen Z Y, Cheng Z Z, et al. Pilot study of CO2gas measurement method for mineral exploration in Hilly Areas[J]. Geophysical and Geochemical Exploration, 2019, 43(1):70-76.
|
[37] |
林成贵, 程志中, 姚晓峰, 等. 基于PMGRA气体地球化学测量在辽东浅覆盖区找矿的可行性[J]. 地球科学, 2020, 45(11):4038-4053.
|
[37] |
Lin C G, Cheng Z Z, Yao X F, et al. Feasibility of prospecting based on PMGRA gas geochemical survey in shallow covered area of Liaodong area[J]. Earth Science, 2020, 45(11):4038-4053.
|
[38] |
陈海龙, 肖其鹏, 梁巨宏. 湖南沃溪金矿区及其外围烃汞叠加晕找矿方法的应用效果[J]. 物探与化探, 2021, 45(2):266-280.
|
[38] |
Chen H L, Xiao Q P, Liang J H. The application of hydrocarbon and superimposed halo method to the Woxi gold deposit,Hunan Province[J]. Geophysical and Geochemical Exploration, 2021, 45(2) :266-280.
|
[39] |
张富贵, 唐瑞玲, 周亚龙, 等. 一种冻土区天然气水合物地球化学勘查新技术——惰性气体氦氖分析[J]. 地质学报, 2019, 93(3):751-761.
|
[39] |
Zhang F G, Tang R L, Zhou Y L, et al. A new tool for natural gas hydrate exploration in permafrost regions:Analysis of inert gas helium neon[J]. Acte Geologica Sinica, 2019, 93(3):751-761.
|
[40] |
奚小环. 自然资源时期:大数据与地球系统科学——再论全面发展时期的勘查地球化学[J]. 物探与化探, 2019, 43(3):449-460.
|
[40] |
Xi X H. Natural resources period:Big data and systematic science of the earth-More on exploration geochemistry during the over all development period[J]. Geophysical and Geochemical Exploration, 2019, 43(3):449-460.
|
[1] |
ZHENG Xu-Ying, XU Ke-Wei, GU Lei, WANG Guo-Jian, LI Guang-Zhi, GUO Jia-Qi, ZOU Yu, BORJIGIN Tenger. Distribution of microorganisms in the typical geothermal field environment and its significance for geothermal exploration[J]. Geophysical and Geochemical Exploration, 2023, 47(5): 1127-1136. |
[2] |
WEI Zhen-Hong, ZHAO Ji-Chang, QU Zheng-Gang, FAN Xin-Xiang, LI Sheng-Ye, CHEN Hai-Yun, LIU Yong-Biao, YANG Zhen-Xi. Application of shallow drilling geochemical survey to shallow overburden area at the peripheral of Nanjinshan gold mine in Beishan, Gansu Province[J]. Geophysical and Geochemical Exploration, 2023, 47(2): 331-342. |
|
|
|
|