|
|
Gravity survey and audio magnetotellurics-based insights into the deep structures and geothermal resource potential of the Rucheng Basin |
ZHAO Bao-Feng1,2,3(), WANG Qi-Nian1,2,3, GUO Xin1,2,3, GUAN Da-Wei1,2,3, CHEN Tong-Gang1,2,3, FANG Wen1,2,3 |
1. Geological Exploration Technology Institute of Anhui Province, Hefei 230031, China 2. Anhui Provincial Key Laboratory of Electrical Prospecting, Hefei 230031, China 3. Technology Innovation Center of Coverage Area Deep Resource Exploration Engineering, MNR, Hefei 230001, China |
|
|
Abstract Geothermal resources are significant clean energy and tourism mineral resources. The Rucheng Basin, a carbonate basin in the southeastern mountainous area of Hunan Province, possesses favorable conditions for the formation of convective geothermal energy. However, the basin is enclosed on three sides by the giant Zhuguangshan rock mass, and its basement is subjected to the intrusion and destruction by the rock mass, resulting in severely deformed formations, crisscrossing faults, and significantly different eastern and western structures. The understanding of the basin's water- and heat-conducting pathways and deep reservoir structures remains elusive, thus restricting the investigation of the basin's geothermal potential. Hence, this study probed the basin's deep structures through gravity survey and audio magnetotellurics (AMT), obtaining the following insights: (1) The Rucheng Basin has developed into a bidirectional ramp structure due to east-west differentiation. The synclinorium in the east experienced compression and clockwise rotation due to the emplacement of the Yanshanian rock mass, rocks were fragmented in the core zone, and strike-slip fracture zones were found at the boundary. The faults have vertical cutting depths exceeding 4 km, widths ranging from 300~600 m, and dip angles between 80°~90°. (2) The basin's basement anticlinal axis hosts several NWW-directed concealed rock masses, with diameters from 3~4 km and buried depths from 0.5~1.5 km. Hot springs reside in the fracture zones crossing the boundaries of the concealed rock masses. (3) The basin boasts favorable conditions for the formation of convective geothermal energy. Folds, fault zones, and concealed rock masses match each other to form a unified spatial combination of heat-controlling elements, manifesting heat accumulation characterized by east-west recharge and intermediate discharge. With more thriving deep geothermal reservoirs in the east, the basin has high potential for geothermal resources.
|
Received: 15 September 2022
Published: 27 October 2023
|
|
|
|
|
|
Geological map of the work area
|
代号 | 地层岩性 | 密度/ (g·cm-3) | 电阻率/ (Ω·m) | J | 侏罗系粉砂质泥岩、 长石石英砂岩 | 2.18~2.65 | 150~320 | P2 | 上二叠统石英砂岩、 粉砂岩、页岩 | 2.52~2.74 | 180~1700 | C2- P1 | 中石炭统—下二叠统粗晶云 岩、泥晶灰岩、泥质灰岩 | 2.70~2.74 | 900~15000 | C1-D3s | 下石炭统—上泥盆统泥晶 灰岩、泥灰岩、粉砂岩 | 2.71~2.76 | 400~9600 | D2- D3s | 中泥盆统—上泥盆统泥晶 灰岩、云质灰岩,底部石 英砂岩 | 2.72~2.82 | 900~15000 | -Pt3 | 寒武系—新远古界,浅变质 长石石英砂岩,石英砂 岩,硅质岩 | 2.71~2.88 | 2800~12000 | αβb | 晚侏罗世安山玄武岩 | 2.62~2.68 | 300~1100 | ηυ | 二长辉长岩 | 2.70~3.20 | 1000~10000 | ηγ | 二长花岗岩 | 2.56~2.58 | 4900~13000 | 其他 | 含裂隙岩石 | | 20~180 |
|
Rock physical properties of Rucheng Basin
|
|
Gravity anomaly and geological interpretation a—Bouguer gravity;b—visual depth of matched filtering 0~2 000 m;c—visual depth of matched filtering 2 000~4 000 m;d—visual depth of matched filtering >4 000 m
|
|
AMT 2D inversion resistivity profile and geological interpretation a—measuring and geological interpretation of L140; b—measuring and geological interpretation of L120; c—measuring and geological interpretation of L104
|
|
Topographic map of the work area
|
|
The deep structure and the geothermal conditions of Rucheng Basin
|
|
Geothermal occurrence mode of Rucheng basin
|
[1] |
汪集暘, 庞忠和, 孔彦龙, 等. 我国地热清洁取暖产业现状与展望[J]. 科技促进发展, 2020, 16(3):294-298.
|
[1] |
Wang J Y, Pang Z H, Kong Y L, et al. Status and prospects of geothermal clean heating industry in China[J]. Science and Technology for Development, 2020, 16(3):294-298.
|
[2] |
王贵玲, 蔺文静. 我国主要水热型地热系统形成机制与成因模式[J]. 地质学报, 2020, 94(7):1923-1937.
|
[2] |
Wang G L, Lin W J. Main hydro-geothermal systems and their genetic models in China[J]. ACTA Geologica Sinica, 2020, 94(7):1923-1937.
|
[3] |
汪集旸. 中低温对流型地热系统[J]. 地学前缘, 1996, 3(3-4):96-100.
|
[3] |
Wang J Y. Low-medium temperature geothermal system of convective type[J]. Earth Science Frontiers, 1996, 3(3-4):96-100.
|
[4] |
史猛, 康凤新, 张杰, 等. 胶东半岛中低温对流型地热资源赋存机理及找热模型[J]. 地质论评, 2019, 65(5):1276-1287.
|
[4] |
Shi M, Kang F X, Zhang J, et al. Occurrence mechanism and geothermal exploration model of low-medium temperature geothermal systems of convective type in Jiaodong Peninsula[J]. Geological Review, 2019, 65(5):1276-1287.
|
[5] |
刘元晴, 周乐, 吕琳, 等. 山东鲁中山区地热地质特征及热水成因[J]. 地质通报, 2020, 39(12):1908-1918.
|
[5] |
Liu Y Q, Zhou L, Lyu L, et al. Geothermal geological characteristics and Genesis of hot water in the central mountain area of Shandong Province[J]. Geological Bulletin of China, 2020, 39(12):1908-1918.
|
[6] |
李超文, 彭头平. 湖南地热资源分布及远景区划[J]. 湖南地质, 2001, 20(4):272-276.
|
[6] |
Li C W, Peng T P. Resources distribution of ground warm-mater in Hunan province and its prospective[J]. Hunan Geology, 2001, 20(4):272-276.
|
[7] |
柏道远, 汪永清, 王先辉, 等. 湘东南汝城盆地性质及其对华南燕山早期构造环境的启示[J]. 沉积与特提斯地质, 2006, 26(1):47-53.
|
[7] |
Bai D Y, Wang Y Q, Wang X H, et al. The nature of the rucheng basin in southeastern Hunan and its significance to the tectonic setting of South China during the early yanshanian[J]. Sedimentary Geology and Tethyan Geology, 2006, 26(1):47-53.
|
[8] |
李建威, 李先福, 李紫金, 等. 走滑变形过程中的流体包裹体研究——以湘东地区为例[J]. 大地构造与成矿学, 1999, 23(3):240-247.
|
[8] |
Li J W, Li X F, Li Z J, et al. Fluid inclusions study in the process of strike slip faulting:A case study in eastern Hunan Province[J]. Geotectonicaet Metallogenia, 1999, 23(3):240-247.
|
[9] |
舒良树, 邓平, 王彬, 等. 南雄—诸广地区晚中生代盆山演化的岩石化学、运动学与年代学制约[J]. 中国科学:地球科学, 2004, 34(1):1-13.
|
[9] |
Shu L S, Deng P, Wang B, et al. Late mesozoic basin-range evolution of Nanxiong Zhuguang area:Constraint from petrochemistry,kinematics and geochronology[J]. Science China:Earth Sciences, 2004, 34(1):1-13.
|
[10] |
曾昭发, 陈雄, 李静, 等. 地热地球物理勘探新进展[J]. 地球物理学进展, 2012, 27(1):168-178.
|
[10] |
Zeng Z F, Chen X, Li J, et al. Advancement of geothermal geophysics exploration[J]. Progress in Geophysics, 2012, 27(1):168-178.
|
[11] |
陈长敬, 刘圣博, 黄理善. 音频大地电磁测深(AMT)约束下的重力三维反演应用研究——以越城岭岩体北缘隐伏岩体为例[J]. 地球物理学进展, 2019, 34(4):1391-1397.
|
[11] |
Chen C J, Liu S B, Huang L S. 3D inversion of gravity under audio frequency magnetotelluric method ( AMT) constraint:A case study of the concealed rock mass in the northern margin of Yuechengling rock mass[J]. Progress in Geophysics, 2019, 34(4):1391-1397.
|
[12] |
严小丽, 康慧敏, 王光杰, 等. AMT方法在鳌山卫花岗岩地区深部地热构造勘探中的应用[J]. 地球物理学进展, 2019, 34(5):1945-1953.
|
[12] |
Yan X L, Kang H M, Wang G J, et al. Application of AMT in deep geothermal structure exploration in Aoshanwei granite area of Qingdao[J]. Progress in Geophysics, 2019, 34(5):1945-1953.
|
[13] |
吾守艾力·肉孜, 梁生贤, 邹光富, 等. AMT与重力方法在云南芦子园地区隐伏岩体勘查中的应用[J]. 物探与化探, 2015, 39(3):525-529.
|
[13] |
Wu S A L, Liang S X, Zou G F, et al. The application of AMT and 3D gravity methods to the prospecting for concealed rock body in the Luziyuan area[J]. Geophysical and Geochemical Exploration, 2015, 39(3):525-529.
|
[14] |
刘圣博, 罗士新, 刘磊, 等. 重磁综合推断中南地区隐伏的中酸性岩体[J]. 工程地球物理学报, 2013, 10(6):805-813.
|
[14] |
Liu S B, Luo S X, Liu L, et al. Deduced the distribution of the concealed acidic-intermediate rock with gravity and magnetic exploration in the South-central area[J]. Chinese Journal of Engineering Grophysics, 2013, 10(6):805-813.
|
[15] |
郭信, 兰学毅, 严加永, 等. 大比例尺重力调查与成矿预测:以江西朱溪钨矿外围为例[J]. 地质与勘探, 2020, 56(5):985-1004.
|
[15] |
Guo X, Lan X Y, Yan J Y, et al. Larg-scale gravity survey and metallogenic prediction:An example of the Zhuxi Tungsten deposit in Jiangxi Province[J]. Geology and Exploration, 2020, 56(5):985-1004.
|
[16] |
伍皓, 夏彧, 周恳恳, 等. 高分异花岗岩浆可能是华南花岗岩型铀矿床主要铀源——来自诸广山南体花岗岩锆石铀含量的证据[J]. 岩石学报, 2020, 36(2):589-600.
|
[16] |
Wu H, Xia Y, Zhou K K, et al. Highly fractionated granite magmas maybe the main Uranium source of granite-type Uranium deposits in South China:Evidence from the Uranium content of zircon in southern Zhuguangshan granitic composite[J]. Acta Petrologica Sinica, 2020, 36(2):589-600.
|
[1] |
XUE Dong-Xu, LIU Cheng, GUO Fa, WANG Jun, XU Duo-Xun, YANG Sheng-Fei, ZHANG Pei. Predicting the geothermal resources of the Tangyu geothermal field in Meixian County, Shaanxi Province, based on soil radon measurement and the controlled source audio magnetotelluric method[J]. Geophysical and Geochemical Exploration, 2023, 47(5): 1169-1178. |
[2] |
GONG Ming-Xu, BAI Li-Ge, ZENG Zhao-Fa, WU Feng-Shou. Machine learning-based calculation and characteristic analysis of terrestrial heat flow in the Songliao Basin[J]. Geophysical and Geochemical Exploration, 2023, 47(3): 766-774. |
|
|
|
|