|
|
DDS-based intelligent modulation of the radio frequency field of helium optically pumped magnetometers |
DENG Xiao-Dan1,2( ), LI Xue-Yan1,2( ), ZHOU Xi-Hua1,2, DUAN Le-Ying1,2, HE Hui1,2 |
1. Key Laboratory of Airborne Geophysics and Remote Sensing Geology, MNR, Beijing 100083, China 2. China Aero Geophysical Survey and Remote Sensing Center for Natural Resources, Beijing 100083, China |
|
|
Abstract Geomagnetic field surveys have been widely applied in the fields such as basic geological study, mineral resource exploration, and military detection. A key tool for geomagnetic field surveys is helium optically pumped magnetometer probes. The frequency modulation precision of the radio frequency field used in the probes is an important factor affecting geomagnetic survey precision. To achieve frequency modulation signals featuring easy modulation, high precision, and high reliability, this study proposed an intelligent frequency modulation technology for the radio frequency field of the magnetometer probes by combining the direct digital frequency synthesizer (DDS) and the microcontroller unit (MCU). This technology can achieve flexible, real-time, automatic, and precise frequency modulation of the radio frequency field of the magnetometer probes. As revealed by the integration tests in which frequency modulation signals were loaded into the helium optically pumped magnetometer system, the magnetometer can obtain stable and precise magnetic resonance signals, thus ensuring high-precision geomagnetic field surveys.
|
Received: 26 May 2022
Published: 27 April 2023
|
|
|
|
|
|
Structure diagram of helium optical pump magnetometer probe
|
|
Overall design block diagram
|
|
Schematic diagram of connection between STM32 and AD9854
|
|
Schematic diagram of circuit connection of AD9854
|
|
Schematic diagram of demodulation circuit connection
|
|
System flow chart
|
|
Diagram of frequency sweep signal output waveform and spectrum analysis
|
|
Demodulate waveform of modulating signal (left: center frequency 1 MHz; right: center frequency 2.8 MHz)
|
|
Magnetic resonance signal of single modulation (a) and continuous modulation (b)
|
[1] |
黄成功, 顾建松, 宗发保, 等. 氦光泵磁力仪探头设计和环路数字化研究[J]. 地球物理学报, 2019, 62(10):3675-3685.
|
[1] |
Huang C G, Gu J S, Zong F B, et al. Design of helium optical-pumping magnetometer probe and digital loop electronics circuit[J]. Chinese Journal of Geophysics, 2019, 62(10):3675-3685.
|
[2] |
吕庆田, 张晓培, 汤井田, 等. 金属矿地球物理勘探技术与设备:回顾与进展[J]. 地球物理学报, 2019, 62(10):3629-3664.
|
[2] |
Lyu Q T, Zhang X P, Tang J T, et al. Review on advancement in technology and equipment of geophysical exploration for metallic deposits in China[J]. Chinese Journal of Geophysics, 2019, 62(10):3629-3664.
|
[3] |
吴文福, 袁皓. 氦光泵磁力仪的应用与发展研究综述[J]. 声学与电子工程, 2016, 4(4):1-5,9.
|
[3] |
Wu W F, Yuan H. Review on application and development of helium photopump magnetometer[J]. Acoustics and Electronics Engineering, 2016, 4(4):1-5,9.
|
[4] |
胡睿帆. 数字式氦光泵磁力仪的工程样机设计[D]. 长春: 吉林大学, 2017.
|
[4] |
Hu R F. Design of engineering prototype for digital Helium optically pumped magnetometer[D]. Changchun: Jilin University, 2017.
|
[5] |
张振宇. 氦光泵磁测技术研究[D]. 长春: 吉林大学, 2012.
|
[5] |
Zhang Z Y. Research on optically pumped Helium magnetic measurement technology[D]. Changchun: Jilin University, 2012.
|
[6] |
连明昌, 程德福, 周志坚, 等. 光泵磁敏传感器中FPGA调频器设计与实现[J]. 传感技术学报, 2012, 25(11):1618-1622.
|
[6] |
Lian M C, Cheng D F, Zhou Z J, et al. Design and realization of frequency modulator with FPGA for optically pumped magneto-dependent sensor[J]. Chinese Journal of Sensors and Actuators, 2012, 25(11):1618-1622.
|
[7] |
张正, 张延华, 温晓伟, 等. 采用可调谐高Q有源电感的高优值VCO的研究[J]. 电子器件, 2021, 44(2):272-277.
|
[7] |
Zhang Z, Zhang Y H, Wen X W, et al. A high figure-of-merit VCO using tunable and high Q active inductor[J]. Chinese Journal of Electron Devices, 2021, 44(2):272-277.
|
[8] |
沈辉, 薛兵, 唐朝阳, 等. 基于DDS技术的信号发生器设计[J]. 电子测量技术, 2020, 43(20):160-164.
|
[8] |
Shen H, Xue B, Tang C Y, et al. Design of signal generator based on DDS technology[J]. Electronic Measurement Technology, 2020, 43(20):160-164.
|
[9] |
童建平, 杨建武. DDS在光泵磁力仪频率锁定中的应用[J]. 浙江工业大学学报, 2019, 47(4):448-452,468.
|
[9] |
Tong J P, Yang J W. The application of DDS in the frequency locking of optical pump magnetometer[J]. Journal of Zhejiang University of Technology, 2019, 47(4):448-452,468.
|
[10] |
王浩军. 基于AD9854的信号源设计[J]. 舰船电子工程, 2018, 38(9):175-178.
|
[10] |
Wang H J. Design of signal source based on AD9854[J]. Ship Electronic Engineering, 2018, 38(9):175-178.
|
[11] |
崔永俊, 杨卫鹏, 刘阳, 等. MIMO雷达正交线性调频信号源系统的设计[J]. 仪表技术与传感器, 2018(7):107-110.
|
[11] |
Cui Y J, Yang W P, Liu Y, et al. Design of orthogonal linear frequency modulation signal source system for MIMO radar[J]. Instrument Technique and Sensor, 2018(7):107-110.
|
[12] |
邹彬, 董军堂, 杨延宁, 等. 基于云平台的温室大棚管理系统[J]. 传感器与微系统, 2021, 40(12):112-114,118.
|
[12] |
Zou B, Dong J T, Yang Y N, et al. Greenhouse management system based on cloud platform[J]. Transducer and Microsystem Technologies, 2021, 40(12):112-114,118.
|
[13] |
万天才. AD650电压频率与频率电压转换器[J]. 国外电子元器件, 1999(7):1-3.
|
[13] |
Wan T C. AD650 voltage frequency to frequency voltage converter[J]. International Electronic Elements, 1999(7):1-3.
|
[14] |
朱亚朋, 李鸿鹏, 霍德强, 等. 基于AD650的模拟信号光纤传输系统的设计[J]. 计算机测量与控制, 2012, 20(6):1662-1664,1668.
|
[14] |
Zhu Y P, Li H P, Huo D Q, et al. Design of analog signal transmission system based on AD650[J]. Computer Measurement & Control, 2012, 20(6):1662-1664,1668.
|
|
|
|