|
|
Inversion of gravity anomalies based on a deep neural network |
WANG Rong( ), XIONG Jie( ), LIU Qian, XUE Rui-Jie |
School of Electronic Information, Yangtze University, Jingzhou 434023,China |
|
|
Abstract Traditional linear inversion of gravity anomalies is liable to encounter local minima and suffer low computational efficiency. Given this, this paper proposed a deep learning-based inversion of gravity anomalies. Specifically, two-dimensional density models of various shapes were firstly established, and gravity anomalies were obtained through forward simulation using these models to form a dataset. Then, a deep neural network was trained using the dataset. Finally, gravity anomaly data were input into the deep neural network to directly yield inversion results. Experimental results show that the inversion method proposed in this study can determine the locations and shapes of underground anomalies quickly and accurately, with high generalization ability and anti-noise ability. Therefore, this method can be used for the inversion of gravity anomalies.
|
Received: 17 June 2021
Published: 28 June 2022
|
|
Corresponding Authors:
XIONG Jie
E-mail: 201972322@yangtzeu.edu.cn;xiongjie@yangtzeu.edu.cn
|
|
|
|
|
Three-layer deep fully connected neural network structure
|
|
Schematic diagram of gravity anomaly inversion based on deep fully connected network
|
|
Deep fully connected network
|
|
Schematic diagram of 7 single models
|
分类 | 参数设置 | 深度全连接网络 | 数据集 | 训练集 | 4432 | | 测试集 | 1109 | 网络设置 | 学习率 | η=10-4 | | 激活函数 | ReLU | | 优化器 | Adam | | L2正则化 | λ=0.01 | 训练过程 | Epochs | 50000 | | Batch size | 1000 | 目标函数 | cost=a×cost1+b×cost2+c×cost3 |
|
Deep fully connected network inversion parameter settings
|
|
Loss change curve
|
|
Inversion results of part of the test set samples
|
|
Average Inversion results of six complex model samples
|
|
Inversion results of abnormal data obtained with the same density parameters
|
|
Inversion result after adding 5 dB Gaussian white noise
|
|
Inversion result after adding 10 dB Gaussian white noise
|
[1] |
Le C Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521(7553): 436-444.
|
[2] |
吴渤. 基于深度神经网络的语音去混响方法研究[D]. 西安: 西安电子科技大学, 2018.
|
[2] |
Wu B. Research on speech de-reverberation method based on deep neural network[D]. Xi'an: Xidian University, 2018.
|
[3] |
Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[J]. NIPS, 2012, 25(2):1-9.
|
[4] |
王逸宸, 柳林涛, 许厚泽. 基于卷积神经网络识别重力异常体[J]. 物探与化探, 2020, 44(2):394-400.
|
[4] |
Wang Y C, Liu L T, Xu H Z. Identification of gravity anomalies based on convolutional neural network[J]. Geophysical and Geochemical Exploration, 2020, 44(2): 394-400.
|
[5] |
Hu Z L, Liu S, Hu X Y, et al. Inversion of magnetic data using deep neural networks[J]. Physics of the Earth and Planetary Interiors, 2021, 311:106653.
|
[6] |
Roy L, Sen M K, Richter T, et al. Inversion and uncertainty estimation of gravity data using simulated annealing: An application over Lake Vostok, East Antarctica[J]. Society of Exploration Geophysicists, 2005, 70(1):J1.
|
[7] |
Boschetti F, Dentith M, List R. Inversion of potential field data by genetic algorithms[J]. Geophysical Prospecting, 1997, 45(3):461-478.
|
[8] |
Xu H L, Wu X P. 2-D Resistivity inversion using the neural network method[J]. Chinese Journal of Geophysics, 2006, 49(2):507-514.
|
[9] |
熊杰, 刘彩云, 邹长春. 基于粒子群优化算法的感应测井反演[J]. 物探与化探, 2013, 37(6):1141-1145.
|
[9] |
Xiong J, Liu C Y, Zou C C. Induction logging inversion based on particle swarm optimization algorithm[J]. Geophysical and Geochemical Exploration, 2013, 37(6): 1141-1145.
|
[10] |
Liu S, Hu X Y, Liu T Y, et al. Ant colony optimisation inversion of surface and borehole magnetic data under lithological constraints[J]. Journal of Applied Geophysics, 2015, 112:115-128.
|
[11] |
Zhang Z, Alkhalifah T. Regularized elastic full-waveform inversion using deep learning[J]. Geophysics, 2019, 84(5): 741-751.
|
[12] |
马国庆, 吴琪, 熊盛青, 等. 基于重磁数据梯度比值的深度学习技术实现场源位置反演方法[J]. 地球科学, 2021, 46(9):3365-3375.
|
[12] |
Ma G Q, Wu Q, Xiong S Q, et al. Deep learning technology based on the gradient ratio of gravity and magnetic data to realize the field source position inversion method[J]. Earth Science, 2021, 46(9):3365-3375.
|
[13] |
梁立锋, 刘秀娟, 张宏兵, 等. 超参数对GRU-CNN混合深度学习弹性阻抗反演影响研究[J]. 物探与化探, 2021, 45(1):133-139.
|
[13] |
Liang L F, Liu X J, Zhang H B, et al. Study on the influence of hyperparameters on GRU-CNN hybrid deep learning elastic impedance inversion[J]. Geophysical and Geochemical Exploration, 2021, 45(1): 133-139.
|
[14] |
Wu B, Meng D, Wang L, et al. Seismic impedance inversion using fully convolutional residual network and transfer learning[J]. IEEE Geosci. Remote Sens. Lett., 2020, 17(12): 1-5.
|
[15] |
付超, 林年添, 张栋, 等. 多波地震深度学习的油气储层分布预测案例[J]. 地球物理学报, 2018, 61(1):293-303.
|
[15] |
Fu C, Lin N T, Zhang D, et al. A case of oil and gas reservoir distribution prediction based on multi-wave seismic deep learning[J]. Chinese Journal of Geophysics, 2018, 61(1): 293-303.
|
[16] |
黄旭日, 代月, 徐云贵, 等. 基于深度学习算法不同数据集的地震反演实验[J]. 西南石油大学学报, 2020, 42(6):16-25.
|
[16] |
Huang X R, Dai Y, Xu Y G, et al. Seismic inversion experiments based on different data sets of deep learning algorithm[J]. Journal of southwest petroleum university, 2020, 42(6):16-25.
|
[17] |
Zhao M, Chen S, Yuen D. Waveform classification and seismic recognition by convolution neural network[J]. China University of Geoscience, 2019, 62(1): 374-382.
|
[18] |
Wang H, Yan J, Fu G. Current status and application prospect of deep learning in geophysics[J]. Prog. Geophys., 2018, 35(2): 642-655.
|
[19] |
Viens L, Van H C. Denoising ambient seismic field correlation functions with convolutional autoencoders[J]. Geophysical Journal International, 2020, 220(3):1521-1535.
|
[20] |
杨磊. 基于BP神经网络的重力异常分离[J]. 工程地球物理学报, 2021, 18(1):90-97.
|
[20] |
Yang L. Gravity anomaly separation based on BP neural network[J]. Journal of Engineering Geophysics, 2021, 18(1): 90-97.
|
[21] |
张志厚, 廖晓龙, 曹云勇, 等. 基于深度学习的重力异常与重力梯度异常联合反演[J]. 地球物理学报, 2021, 64(4):1435-1452.
|
[21] |
Zhang Z H, Liao X L, Cao Y Y, et al. Joint inversion of gravity anomaly and gravity gradient anomaly based on deep learning[J]. Chinese Journal of Geophysics, 2021, 64(4): 1435-1452.
|
[22] |
Yang Q G, Hu X Y, Liu S, et al. 3D gravity inversion based on deep convolution neural networks[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19:1-5.
|
[1] |
DING Zhi-Jun, LUO Wei-Bin, LIAN Wei-Zhang, ZHANG Xing, HE Hai-Pin. One-dimensional inversion of induced polarization sounding data based on the differential evolution algorithm with two-step mutation[J]. Geophysical and Geochemical Exploration, 2023, 47(4): 1033-1039. |
[2] |
LIU Bao, YANG Yu-Shan, LIU Tian-You. Metallogenic prospect prediction and 3D geological modeling for the Tonglyushan ore field[J]. Geophysical and Geochemical Exploration, 2023, 47(4): 906-915. |
|
|
|
|