|
|
Hydrogeochemical characteristics of deep geothermal fluids in the Binhai New Area, Tianjin City |
SHI Xiao-Jin, LI Yuan-Yuan, HUANG Xian-Long |
Tianjin Geothermal Exploration and Development-Designing Institute, Tianjin 300250,China |
|
|
Abstract The understanding of the Paleogene Dongying formation and the Jixianian Wumishan formation have been gradually deepened with the exploration and development of deep thermal reservoirs in the Binhai New Area.This paper analyzes the hydrochemical characteristics, reservoir temperature, and hydrogeochemical effects of the geothermal fluid of the Dongying and Wumishan formations, thus providing bases for the further development and utilization of deep geothermal resources. The Wumishan formation in the Ninghe salient is adequately recharged. In contrast,the Dongying formation occursin a relatively closed environment, and the geothermal fluid in it is at a state of chemical equilibrium. The average temperature of the geothermal reservoirs in the Wumishan and Dongying formation scalculated using geothermometers is about 126 ℃ and 100 ℃, respectively. The geothermal fluid in both formations originates from atmospheric precipitation. Compared to the Wumishan formation, the geothermal fluidin the Dongying formation exchanges heat with rocks for a longer time and has a weaker cycling capacity. The runoff direction of the geothermal fluid in the formations is from northeast to southwest, with leaching, cation exchange, precipitation,and mixing mainly occurring during the fluid runoff.
|
Received: 30 March 2021
Published: 28 June 2022
|
|
|
|
|
|
Distribution of geothermal wells and geological structure map in the study area
|
|
Piper diagram of geothermal water
|
井号 | 热储层 | K+ | Na+ | Ca2+ | Mg2+ | Cl- | S | HC | SiO2 | F- | 矿化度 | 水化学类型 | TG-34 | Ed | 7.4 | 1064 | 6.1 | 0.6 | 1169.8 | 8.2 | 781.1 | 49 | 5.21 | 2407.3 | Cl·HCO3-Na | TG-33 | Ed | 4.9 | 593.3 | 9.7 | 0.8 | 402.4 | 235.9 | 555.3 | 42.5 | 7.08 | 3122.2 | Cl·HCO3-Na | 塘20-2 | Ed | 9.4 | 1190 | 8.4 | 0.9 | 1258.5 | 40.1 | 872.6 | 58.4 | 3.5 | 1692.1 | Cl·HCO3-Na | ST-01 | Ed | 8.0 | 801.1 | 10.5 | 0.9 | 831.3 | 116.1 | 579.7 | 58.5 | 3.6 | 2406.1 | Cl·HCO3-Na | ST-01B | Ed | 7.9 | 779.7 | 9.7 | 0.8 | 852.6 | 105.1 | 619.4 | 61 | 4 | 2436.2 | Cl·HCO3-Na | BST-01 | Jxw | 79.9 | 201.4 | 36.4 | 6.8 | 85.1 | 200.8 | 414.9 | 94.5 | 8.23 | 1119.8 | HCO3-Na | DG-53 | Jxw | 41.2 | 536.1 | 22.7 | 4.1 | 460.8 | 280.1 | 494.3 | 72 | 9.6 | 1915.5 | Cl·HCO3-Na | DG-46 | Jxw | 72.5 | 642.8 | 38.1 | 7.9 | 581.4 | 343.9 | 454.6 | 83.8 | 10.4 | 2225 | HCO3·Cl-Na | DG-45B | Jxw | 51.2 | 554.5 | 30.1 | 6.1 | 478.6 | 302.6 | 494.3 | 74.5 | 10.8 | 1991.9 | Cl-Na |
|
The mail components of geothermal water in the study area
|
地热井 | O2 | N2 | CH4 | CO2 | H2 | 其他气体 | TG-34 | 8.6 | 34.9 | 38.58 | 17.8 | 0.12 | 0 | ST-01 | 13.67 | 59.2 | 10.8 | 16.3 | 0.03 | 0 | BST-01 | 1.2 | 87.09 | 4.64 | 2.19 | 2.96 | 1.96 |
|
Generally dissolved gas components in geothermal fluid water samples %
|
项目 | φ(Ar)/ (mL·L-1) | φ(He)/ (mL·L-1) | R/Ra | 3He/4He | 40Ar/36Ar | 38Ar/36Ar | δ13C(PDB,‰) | CO2 | CH4 | 含量 | 1.01 | 0.43 | 0.2 | 2.84×10-7 | 327 | 0.1951 | -8.0 | -38.1 |
|
Trace gas composition data sheet of BST-01 geothermal fluid water sample
|
|
He-Ar-N2 gas triangular diagram of BST-01 fluid
|
|
Na-K-Mg content triangular diagram
|
|
SiO2 and temperature diagram
|
地热井 | 热储层 | 石英温标 (无蒸汽损失) | 石英温标 (有蒸汽损失) | 玉髓温标 | K-Na温标 | 井口温度 | BST-01 | Jxw | 134 | 130 | 107 | 372 | 98 | DG-53 | Jxw | 120 | 118 | 91 | 212 | 95 | DG-46 | Jxw | 128 | 125 | 100 | 242 | 98 | DG-45B | Jxw | 121 | 119 | 93 | 226 | 99 | ST-01 | Ed | 109 | 108 | 79 | 97 | 74 | ST-01B | Ed | 111 | 110 | 82 | 98 | 76 | TG-34 | Ed | 100 | 101 | 73 | 89 | 74 |
|
Thermal temperature estimation of geothermal fluid ℃
|
井号 | 热储层 | 采集时间 | δ18Ov-SMOW/‰ | δDv-SMOW/‰ | R-1 | 蓟州区雨水 | 2016年10月15日 | -9.1 | -66 | Q-2 | 西孟村机井 | 2016年10月14日 | -9.6 | -73 | TG-13 | Nm | 2016年12月09日 | -9.5 | -73 | TG-24 | Ng | 2016年12月23日 | -9.3 | -73 | TG-33 | Ed与Ng混采 | 2016年12月08日 | -9.1 | -73 | TG-34 | Ed | 2017年01年04日 | -7 | -65 | DG-53 | Jxw | 2016年12月08日 | -9.1 | -73 | DL-21 | Jxw | 2016年12月23日 | -8.7 | -72 | BST-01 | Jxw | 2016年06月08日 | -8 | -68 |
|
Isotope components of water sample in the study area
|
|
δD-δ18O curve diagram in the study area
|
|
Main ion relationship diagram of geothermal fluid in the study area
|
[1] |
李文龙, 黄贤龙, 张连第, 等. 天津市滨海新区地热地质条件及热储特征分析[J]. 中国水运, 2014, 14(11):280-282
|
[1] |
Li W L, Huang X L, Zhang L D, et al. Analysis of geothermal geological conditions and thermal storage characteristics in Tianjin Binhai New Area[J]. China Water Transport, 2014, 14(11):280-282
|
[2] |
阮传侠, 于彦, 高宝珠, 等. 天津滨海新区地热流体水化学特征分析[J]. 地下水, 2010, 2(1):51-53.
|
[2] |
Ruan C X, Yu Y, Gao B Z, et al. Hydrochemical characteristics analysis of geothermal fluids in Tianjin Binhai New Area[J]. Groundwater. 2010, 2(1):51-53.
|
[3] |
赵平, 谢鄂军, 多吉, 等. 西藏地热气体的地球化学特征及其地质意义[J]. 岩石学报, 2002, 18(4):539-550.
|
[3] |
Zhao P, Xie E J, Duo J, et al. Geochemical characteristics of geothermal gases and geological significance in Tibet[J]. Acta Petrologica Sinica, 2002, 18(4):539-550.
|
[4] |
刘昭, 蔺文静, 张萌, 等. 西藏尼木—那曲地热流体成因及幔源流体贡献[J]. 地学前缘, 2014, 21(6):366-367.
|
[4] |
Liu Z, Lin W J, Zhang M, et al. Genesis of Nimu-Nagqu geothermal fluids in Tibet and contribution of mantle-derived fluids[J]. Geoscience Frontier, 2014, 21(6): 366-367.
|
[5] |
叶海龙, 樊柄宏, 白细民, 等. 地热水混合比例估算探讨[J]. 江西地质, 2017, 18(4):317-322.
|
[5] |
Ye H L, Fan B H, Bai X M, et al. Discussion on the estimation of the mixing ratio of geothermal water[J]. Geology of Jiangxi, 2017, 18(4):317-322.
|
[6] |
王莹, 周训, 于渡, 等. 应用地热温标估算地下热储温度[J]. 现代地质, 2007, 21(4):606-612.
|
[6] |
Wang Y, Zhou X, Yu D, et al. Estimation of storage temperature of underground thermal using geothermal temperature scale[J]. Geoscience, 2007, 21(4):606-612.
|
[7] |
宋小庆, 段启彬, 孟凡涛, 等. 贵州息烽温泉地质成因分析[J]. 地质科技情报, 2014, 33(5):216-220.
|
[7] |
Song X Q, Duan Q B, Meng F T, et al. Geological genesis analysis of Xifeng hot spring in Guizhou[J]. Geological Science and Technology Information, 2014, 33(5):216-220.
|
[8] |
袁建飞, 邓国仕, 徐芬, 等. 川西南喜德热田地下水水文地球化学特征[J]. 现代地质, 2017, 31(1):200-208.
|
[8] |
Yuan J F, Deng G S, Xu F, et al. Hydrogeochemical characteristics of groundwater in Xide hot field in southwestern Sichuan[J]. Geoscience, 2017, 31(1): 200-208.
|
[9] |
马振民, 何江涛, 张锡明. 菏泽凸起地下热水的水文地球化学特征及成因分析[J]. 山东地质, 2000, 16(2):24-30.
|
[9] |
Ma Z M, He J T, Zhang X M. Hydrogeochemical characteristics and genesis analysis of underground hot water in Heze uplift[J]. Shandong Geology, 2000, 16(2):24-30.
|
[10] |
张保建. 鲁西北地区地下热水的水文地球化学特征及形成条件分析[D]. 北京: 中国地质大学, 2011.
|
[10] |
Zhang B J. Analysis of hydrogeochemical characteristics and formation conditions of underground hot water in northwestern Shandong[D]. Beijing: China University of Geosciences, 2011.
|
[11] |
林黎, 高宝珠, 阮传侠, 等. 全国地热资源研究评价与区划——天津市地热资源现状研究评价与区划[R]. 天津:天津地热勘查开发设计院, 2014.
|
[11] |
Lin L, Gao B Z, Ruan C X, et al. National geothermal resources research evaluation and division- Research, evaluation and division of geothermal resources in Tianjin[R]. Tianjin:Tianjin Geothermal Exploration and Development-Designing Institute, 2014.
|
[12] |
汪啸. 广东沿海典型深大断裂带地热水系统形成条件及水文地球化学特征[D]. 武汉: 中国地质大学, 2018.
|
[12] |
Wang X. Formation conditions and hydrogeochemical characteristics of the geothermal water system in the typical deep and large fault zone along the coast of Guangdong[D]. Wuhan: China University of Geosciences, 2018.
|
[13] |
孙红丽. 关中盆地地热资源赋存特征及成因模式研究[D]. 北京: 中国地质大学, 2015.
|
[13] |
Sun H L. Study on the occurrence characteristics and genetic model of geothermal resources in the Guanzhong Basin[D]. Beijing: China University of Geosciences, 2015.
|
[14] |
程万庆, 唐永香. 滨海新区深部地热资源调查评价报告[R]. 天津:天津地热勘查开发设计院, 2017.
|
[14] |
Cheng W Q, Tang Yong X. Investigation and evaluation report of deep geothermal resources in Binhai New Area[R]. Tianjin:Tianjin Geothermal Exploration and Development-Designing Institute, 2017.
|
|
|
|