|
|
Tracing and identification of concealed Luoboling copper-molybdenum deposit in Fujian Province using trace elements and isotopes in fine-grained surface soils |
LI Jian-Ting1(), LIU Xue-Min1(), WANG Xue-Qiu2, HAN Zhi-Xuan2, JANG Yao1 |
1. College of Earth Sciences,Chengdu University of Technology, Chengdu 610059, China 2. Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang 065000, China |
|
|
Abstract This paper collected surface soil above the known concealed deposit the Luoboling porphyry-type copper-molybdenum deposit and acquired samples of ore and surrounding rocks from typical boreholes of the deposit. Then, it analyzed the changes in the contents of six trace elements (Cu, Mo, Ba, Pb, Zn, and V) and the isotopic composition of S and Pb, aiming to verify the ore prospecting effects of the measurement technology of mobile forms of metals in soil and full analysis of fine-grained soil in concealed deposits and to identify the sources of surface geochemical anomalies according to the isotopic composition of Pb and S. The study results are as follows. The total analysis of fine-grained soil showed the best effects in indicating deep ore bodies in the Luoboling deposit, and the areas with high contents of Cu, Ba, and Mo correlated strongly with the distribution of deeply concealed ore bodies. Both the mobile forms of metals in the soil and the total analysis of fine-grained soil showed that it is quite possible that concealed ore bodies occur below sampling points No.14 and 15. Meanwhile, the changes in the contents of V, Pb, and Zn obtained using both methods can accurately delineate the scopes of mineralized rock masses close to the ground surface. However, most of the total sulfur isotopic composition in the soil of anomaly zones inherits from the non-ore-hosting surrounding rocks and masked the contribution from the deep ore bodies. Consequently, sulfur isotopes showed poor effects in indicating the sources of anomalies in the surface soil in the Luoboling deposit. Therefore, it is more reasonable to measure the sulfur isotopic composition according to the mobile forms of metals in the soil. In contrast, the total Pb isotopes in the soil of the anomaly zones inherit the characteristics of the Pb isotopes of deep ore bodies. This serves as direct evidence of full analysis of fine-grained soil in the mineral exploration of coverage areas.Moreover, the changes in the 206Pb/204Pb ratio in the full analysis of surface fine-grained soil correlated strongly with the distribution of underlying concealed ore bodies and thereby can effectively indicate the deep concealed ore bodies.
|
Received: 25 December 2020
Published: 25 February 2022
|
|
Corresponding Authors:
LIU Xue-Min
E-mail: 448287250@qq.com;451245437@qq.com
|
|
|
|
22]) 1—early Cretaceous Luoboling granodiorite porphyry;2—early Cretaceous Sifang granodiorite; 3—early Cretaceous Shimaoshan volcanic rocks;4—Quaternary alluvial sediments;5—late Jurassic Caixi monzogranite pluton;6—middle Jurassic Zijinshan granite batholith;7—Cretaceous dacitic porphyries;8—Cretaceous cryptoexplosive breccia pipes;9—early Cretaceous Lindi clasitic sediments;10—late Devonian clasitic sediments (Tianwadong & Taozikeng formations);11—Neoproterozoic Louziba metamorphosed clasitic sediments;12—fault;13—section view of exploration line 264;14—ore deposit;15—mineralization alteration zone (K-Phl: weakly potassium-sericitization alteration zone, Chl-Phl: weakly chlorogenic-sericitization alteration zone, Kl-Phy: kaolinitization-pyrite sericitization, Ms-Di-Alu: dolomitization-kazitritization-alum petrochemistry);16—the study area;17—soil sampling points;18—drill hole ">
|
Geological schematic diagram (a) of Zijinshan ore field in Fujian Province, geological schematic diagram (b) of Luoboling mining area (modified from Zhong J,et al.[22]) 1—early Cretaceous Luoboling granodiorite porphyry;2—early Cretaceous Sifang granodiorite; 3—early Cretaceous Shimaoshan volcanic rocks;4—Quaternary alluvial sediments;5—late Jurassic Caixi monzogranite pluton;6—middle Jurassic Zijinshan granite batholith;7—Cretaceous dacitic porphyries;8—Cretaceous cryptoexplosive breccia pipes;9—early Cretaceous Lindi clasitic sediments;10—late Devonian clasitic sediments (Tianwadong & Taozikeng formations);11—Neoproterozoic Louziba metamorphosed clasitic sediments;12—fault;13—section view of exploration line 264;14—ore deposit;15—mineralization alteration zone (K-Phl: weakly potassium-sericitization alteration zone, Chl-Phl: weakly chlorogenic-sericitization alteration zone, Kl-Phy: kaolinitization-pyrite sericitization, Ms-Di-Alu: dolomitization-kazitritization-alum petrochemistry);16—the study area;17—soil sampling points;18—drill hole
|
介质 | 检测项目 | 分析实验室 | 主要检测方法和仪器 | 土壤 | 微细粒全量Cu、Mo、Ba、Pb、Zn、V | 河南省岩矿测试中心 | DZ/T 0064.80—93 XSERIES 2 电感耦合等离子质谱仪 | 微细粒金属活动态Cu、Mo、Ba、Pb、Zn、V | 硫、铅同位素 | 核工业北京地质研究院 | DZ/T 0184.12—1997 ISOPROBE-T 热表面电离质谱仪 | 围岩 | 矿石 (单矿物) | DZ/T 0184.15—1997 Deltavplus 气体同位素质谱计 |
|
Analysis methods of sampling media
|
元素 | 最大值 | 最小值 | 中位数 | 极值比 | 平均值 | 标准差 | 变异系数 | 福建省土壤背景值 | 富集系数 | Cu | 234 | 23 | 73.1 | 10.1 | 100.35 | 63.35 | 0.63 | 22.6 | 4.44 | Mo | 46.14 | 1.9 | 11.4 | 24.28 | 14.32 | 12.2 | 0.85 | 5.14 | 2.79 | Ba | 732.5 | 71.5 | 304.5 | 10.24 | 339.04 | 216.57 | 0.64 | 300 | 1.13 | Pb | 237 | 31.8 | 92.1 | 7.45 | 110.67 | 59.56 | 0.54 | 34.9 | 3.17 | Zn | 41.6 | 16.8 | 30.4 | 2.48 | 28.94 | 7.85 | 0.27 | 82.7 | 0.35 | V | 91.55 | 18.96 | 53.88 | 4.83 | 55.27 | 20.75 | 0.38 | 78.3 | 0.71 |
|
Statistical parameters of 6 trace elements in fine soils of the exploration line 264 in Luoboling Cu-Mo deposit area (n=15)
|
34]) ">
|
Line graphs of six trace elements’ concentration in the fine grained soils of the 264 exploration line in the Luoboling ore area (modified from Zhao C,et al[34])
|
元素 | 最大值 | 最小值 | 极值比 | 中位值 | 平均值 | 占微细粒全量百分比/% | Cu | 17.37 | 1.04 | 16.7 | 3.99 | 5.28 | 5.26 | Mo | 278.00 | 25.00 | 11.12 | 54.30 | 75.29 | 0.53 | Ba | 2.28 | 0.37 | 6.16 | 0.54 | 0.51 | 0.15 | Pb | 20.75 | 0.64 | 32.42 | 8.30 | 6.06 | 5.48 | Zn | 4.30 | 1.41 | 3.05 | 1.91 | 2.06 | 7.12 | V | 765.00 | 42.85 | 17.85 | 257.00 | 296.60 | 0.55 |
|
Statistical parameters of active states for 6 trace elements in fine soils of 264 exploration line in Luoboling Cu-Mo mining area (n=15)
|
|
Line diagrams of active states for 6 trace elements in fine soils of 264 exploration line in Luoboling Cu-Mo mining area
|
| 样品编号 | 点性 | δ34S/‰ | | 样品编号 | 点性 | δ34S/‰ | | 264-1 | 背景 | 6.9 | | VII03-7 | 黄铁矿 | 2 | | 264-2 | 背景 | 5 | | VII03-8 | 黄铁矿 | 2.2 | | 264-3 | 背景 | 10.3 | | TZ11* | 黄铁矿 | 1.7 | | 264-4 | 背景 | -0.4 | | TZ16* | 黄铁矿 | 2.6 | | 264-5 | 背景 | 4.2 | | TZ19* | 黄铁矿 | 1.9 | | 264-6 | 异常 | 5.4 | | TZ21* | 黄铁矿 | 1.8 | | 264-7 | 异常 | 6.6 | | ZK36-282-1* | 黄铁矿 | 2.7 | 土壤 | 264-8 | 异常 | 7 | 矿石 | ZK36-282-2* | 黄铁矿 | 1.8 | | 264-9 | 异常 | 12.3 | | ZK001-1* | 黄铁矿 | 0.5 | | 264-10 | 异常 | 15.3 | | ZK001-2* | 黄铁矿 | 0.9 | | 264-11 | 异常 | 13.6 | | ZK25-4* | 黄铁矿 | 0.9 | | 264-12 | 异常 | 13.6 | | ZKIX-09* | 辉钼矿 | 2.2 | | 264-13 | 异常 | 14.1 | | ZK001-2* | 闪锌矿 | -1.6 | | 264-14 | 异常 | 1.8 | | ZK25-4* | 方铅矿 | -1.2 | | 264-15 | 异常 | 8 | | | | | | IX04-7 | 黄铁矿 | 0.6 | | IX04-20 | 非赋矿围岩 | 11.6 | | IX04-8 | 黄铁矿 | 0.9 | | VI03-4 | 非赋矿围岩 | 16.6 | | IX04-10 | 黄铁矿 | 2.2 | 围岩 | VI03-20 | 非赋矿围岩 | 10.2 | | VI03-9 | 黄铁矿 | 1.7 | | VII03-15 | 非赋矿围岩 | 11.1 | | VI03-10 | 黄铁矿 | 1.5 | | VII03-16 | 非赋矿围岩 | 6.2 |
|
Sulfur isotopic data of fine-grained soil, ore and wall rock samples in Luoboling Cu-Mo mining area (n=39)
|
|
Sulfur isotopic composition diagrams of ores, rocks, soil background and soil anomalies in the Luoboling Cu-Mo mining area
|
| 矿石 | 围岩 | 土壤背景 | 土壤异常 | 矿石 | 1 | | | | 围岩 | 0 | 1 | | | 土壤背景 | 0 | 0.04 | 1 | | 土壤异常 | 0 | 0.57 | 0.08 | 1 |
|
P values of variance analysis of sulfur isotope data of different media in Luoboling mining area
|
|
Sulfur isotope distribution of total soil fine particles along exploration line 264 of Luoboling mining area
|
| 样品编号 | 点性 | 208Pb/204Pb | 误差 | 207Pb/204Pb | 误差 | 206Pb/204Pb | 误差 | | 264-1 | 背景 | 38.799 | 0.006 | 15.655 | 0.002 | 18.555 | 0.003 | | 264-2 | 背景 | 38.787 | 0.003 | 15.64 | 0.001 | 18.578 | 0.001 | | 264-3 | 背景 | 38.805 | 0.003 | 15.639 | 0.001 | 18.582 | 0.002 | | 264-4 | 背景 | 38.815 | 0.004 | 15.649 | 0.002 | 18.611 | 0.002 | | 264-5 | 背景 | 38.846 | 0.003 | 15.661 | 0.001 | 18.645 | 0.001 | | 264-6 | 异常 | 38.804 | 0.003 | 15.651 | 0.001 | 18.607 | 0.001 | | 264-7 | 异常 | 38.694 | 0.003 | 15.626 | 0.001 | 18.481 | 0.001 | 土壤 | 264-8 | 异常 | 38.788 | 0.003 | 15.655 | 0.001 | 18.529 | 0.002 | | 264-9 | 异常 | 38.751 | 0.003 | 15.646 | 0.001 | 18.521 | 0.001 | | 264-10 | 异常 | 38.773 | 0.005 | 15.651 | 0.002 | 18.492 | 0.002 | | 264-11 | 异常 | 38.694 | 0.004 | 15.627 | 0.002 | 18.493 | 0.002 | | 264-12 | 异常 | 38.754 | 0.003 | 15.637 | 0.001 | 18.508 | 0.001 | | 264-13 | 异常 | 38.728 | 0.004 | 15.635 | 0.001 | 18.48 | 0.001 | | 264-14 | 异常 | 38.774 | 0.005 | 15.636 | 0.002 | 18.495 | 0.002 | | 264-15 | 异常 | 38.773 | 0.003 | 15.642 | 0.001 | 18.54 | 0.002 | | IX04-7 | 黄铁矿 | 38.767 | 0.007 | 15.634 | 0.008 | 18.509 | 0.008 | | IX04-8 | 黄铁矿 | 38.951 | 0.007 | 15.595 | 0.003 | 18.537 | 0.003 | | IX04-10 | 黄铁矿 | 38.899 | 0.004 | 15.629 | 0.001 | 18.491 | 0.002 | | VI03-10 | 黄铁矿 | 39.067 | 0.007 | 15.643 | 0.003 | 18.764 | 0.003 | | VII03-7 | 黄铁矿 | 39.215 | 0.009 | 15.618 | 0.003 | 18.617 | 0.004 | | VII03-8 | 黄铁矿 | 38.864 | 0.008 | 15.622 | 0.003 | 18.634 | 0.004 | | M1# | 辉钼矿 | 38.741 | 0.001 | 15.655 | 0.001 | 18.479 | 0.001 | | M4# | 辉钼矿 | 38.732 | 0.011 | 15.666 | 0.004 | 18.48 | 0.005 | | M5# | 辉钼矿 | 38.751 | 0.001 | 15.667 | 0.001 | 18.455 | 0.002 | | Py5# | 黄铁矿 | 38.67 | 0.013 | 15.666 | 0.005 | 18.493 | 0.006 | | Py8# | 黄铁矿 | 38.749 | 0.007 | 15.667 | 0.003 | 18.417 | 0.004 | | Py9# | 黄铁矿 | 38.752 | 0.003 | 15.661 | 0.001 | 18.486 | 0.002 | 矿石 | Py10# | 黄铁矿 | 38.788 | 0.003 | 15.668 | 0.001 | 18.476 | 0.002 | | Py11# | 黄铁矿 | 38.799 | 0.001 | 15.67 | 0.001 | 18.491 | 0.001 | | Py18# | 黄铁矿 | 38.773 | 0.004 | 15.668 | 0.002 | 18.453 | 0.002 | | Py20# | 黄铁矿 | 38.736 | 0.001 | 15.655 | 0.001 | 18.473 | 0.001 | | Py23# | 黄铁矿 | 38.775 | 0.003 | 15.658 | 0.002 | 18.469 | 0.002 | | Py32# | 黄铁矿 | 38.743 | 0.001 | 15.654 | 0.001 | 18.482 | 0.001 | | Py33# | 黄铁矿 | 38.812 | 0.007 | 15.663 | 0.003 | 18.502 | 0.004 | | Py34# | 黄铁矿 | 38.838 | 0.007 | 15.674 | 0.003 | 18.503 | 0.004 | | Py35# | 黄铁矿 | 38.674 | 0.002 | 15.644 | 0.001 | 18.426 | 0.001 | | Py36# | 黄铁矿 | 38.772 | 0.002 | 15.66 | 0.001 | 18.503 | 0.001 | | Py37# | 黄铁矿 | 38.815 | 0.005 | 15.66 | 0.002 | 18.505 | 0.002 | | Py39# | 黄铁矿 | 38.811 | 0.008 | 15.67 | 0.003 | 18.498 | 0.004 | | Py40# | 黄铁矿 | 38.719 | 0.002 | 15.65 | 0.001 | 18.456 | 0.001 | | IX04-20 | 非赋矿岩体 | 39.358 | 0.004 | 15.659 | 0.001 | 19.243 | 0.002 | | VI03-4 | 非赋矿岩体 | 39.854 | 0.004 | 15.709 | 0.002 | 19.86 | 0.002 | | VI03-20 | 非赋矿岩体 | 39.463 | 0.006 | 15.668 | 0.002 | 19.349 | 0.003 | | VII03-15 | 非赋矿岩体 | 39.025 | 0.003 | 15.647 | 0.001 | 18.936 | 0.001 | | VII03-17 | 非赋矿岩体 | 39.352 | 0.004 | 15.695 | 0.001 | 19.253 | 0.002 | 围岩 | ZK4012-1# | 非赋矿岩体 | 38.721 | 0.001 | 15.647 | 0.001 | 18.575 | 0.001 | | 16-308# | 非赋矿岩体 | 38.823 | 0.001 | 15.665 | 0.001 | 18.525 | 0.001 | | ZL-1-4# | 非赋矿岩体 | 38.777 | 0.003 | 15.654 | 0.001 | 18.538 | 0.001 | | IX-01-3# | 非赋矿岩体 | 38.864 | 0.002 | 15.648 | 0.001 | 18.634 | 0.001 | | IX01-4# | 非赋矿岩体 | 38.826 | 0.001 | 15.654 | 0.001 | 18.589 | 0.001 | | IX01-7# | 非赋矿岩体 | 38.785 | 0.001 | 15.643 | 0.001 | 18.565 | 0.001 | | IX01-10# | 非赋矿岩体 | 38.803 | 0.002 | 15.652 | 0.001 | 18.627 | 0.001 |
|
Lead isotopic data of fine-grained soil, ore and wall rock samples in Luoboling Cu-Mo mining area (n=52)
|
|
208Pb/204Pb vs.206Pb/204Pb(a)、207Pb/204Pb vs.206Pb/204Pb(b) composition diagrams of ores, wall rocks, soil background and soil anomalies in the Luoboling Cu-Mo mining area
|
铅同位素 | 介质 | 矿石 | 围岩 | 土壤背景 | 土壤异常 | 206Pb/204Pb | 矿石 | 1 | | | | | 围岩 | 0 | 1 | | | | 土壤背景 | 0.01 | 0.16 | 1 | | | 土壤异常 | 0.66 | 0.01 | 0 | 1 | 207Pb/204Pb | 矿石 | 1 | | | | | 围岩 | 0.2 | 1 | | | | 土壤背景 | 0.67 | 0.2 | 1 | | | 土壤异常 | 0.07 | 0.01 | 0.16 | 1 | 208Pb/204Pb | 矿石 | 1 | | | | | 围岩 | 0 | 1 | | | | 土壤背景 | 0.97 | 0.16 | 1 | | | 土壤异常 | 0.17 | 0.02 | 0.01 | 1 |
|
P values of variance analysis of lead isotope data of different media in Luoboling mining area
|
|
Diagram of 207Pb/204Pb vs.206Pb/204Pb for various media in Luoboing mining area
|
|
Lead isotope distribution of total soil fine particles along exploration line 264 of Luoboling mining area
|
[1] |
Ryss Y S, Goldber G I S. The partial extraction of metals (CHIM) method in mineral exploration[J]. Method and Technique, 1973,84:5-19.
|
[2] |
Kristiansson K, Malmqvist L. Evidence for nondiffusive transport of 86Rn in the ground and a new physical model for the transport[J]. Geophysics, 1982,47(10):1444-1452.
|
[3] |
Clark J R. Enzyme-induced leaching of B-horizon soils for mineral exploration in areas of glacial overburden[J]. Transactions of the Institution of Mining and Metallurgy Section B-Applied Earth Science, 1993,102:B19-B29.
|
[4] |
Mann A W, Birrell R D, Mann A T, et al. Application of the mobile metal ion technique to routine geochemical exploration[J]. Journal of Geochemical Exploration, 1988,61:87-102.
|
[5] |
Wang X Q, Cheng Z Z, Lu Y X, et al. Nanoscale metals in earthgas and mobile forms of metals in overburden in wide-spaced regional exploration for giant deposits in overburden terrains[J]. Journal of Geochemical Exploration, 1997,58:63-72.
|
[6] |
Wang X Q. Leaching of mobile forms of metals in overburden: development and application[J]. Journal of Geochemical Exploration, 1998,61:39-55.
|
[7] |
王学求. 寻找和识别隐伏大型特大型矿床的勘查地球化学理论方法与应用[J]. 物探与化探, 1998,22(2):81-108.
|
[7] |
Wang X Q. Geochmical methods and application for glant ore deposits in concealed terrains[J]. Geophysical and Geochemical Exploration, 1998,22(2):81-108.
|
[8] |
汪明启, 高玉岩. 利用铅同位素研究金属矿床地气物质来源:甘肃蛟龙掌铅锌矿床研究实例[J]. 地球化学, 2007,36(4):391-399.
|
[8] |
Wang M Q, Gao Y Y. Tracing source of geogas with lead isotopes: A case study in Jiaolongzhang Pb-Zn deposit, Gansu Province[J]. Geochimica, 2007,36(4):391-399.
|
[9] |
徐洋, 汪明启, 高玉岩, 等. 利用铅同位素研究山东邹平王家庄铜矿地气物质来源[J]. 物探与化探, 2014,38(1):23-27.
|
[9] |
Xu Y, Wang M Q, Gao Y Y, et al. Tracing the source of geogas mathrials with the leaad isotope method in the Wangjiazhuang copper ore deposite of Zouping, Shandong Province[J]. Geophysical and Geochemical Exploration, 2014,38(1):23-27.
|
[10] |
刘雪敏, 陈岳龙, 王学求. 深穿透地球化学异常源同位素识别研究:以新疆金窝子金矿床、内蒙古拜仁达坝—维拉斯托多金属矿床为例[J]. 现代地质, 2012,26(5):1104-1116.
|
[10] |
Liu X M, Chen Y L, Wang X Q. Research on isotope identification for anomalous sources of deeppenetration geochemistry: two cases of Jinwozi Au deposit, Xinjiang and Bairendaba-weilasituo polymetallic deposit, Inner Mongolia[J]. Modern Geology, 2012,26(5):1104-1116.
|
[11] |
Saunders J A, Mathur R, Kamenov G D, et al. New isotopic evidence bearing on bonanza (Au-Ag) epithermal ore-forming proceses[J]. Mineralium Deposita, 2015,51(1):1-11.
|
[12] |
Matthew I L, Brian L C, Wayne D G. Lead isotopes in ground and surface waters: fingerprinting heavy metal sources in mineral exploration[J]. Geochemistry: Exploration, Environment, Analysis, 2009,9:115-123.
|
[13] |
Caritat P D, Kirste D, Carr D, et al. Groundwater in the broken hillregion, Australia: Recognising interaction with bedrock and mineralisation using S and Pb isotopes[J]. Applied Geochemistry, 2005,20(4):767-787.
|
[14] |
于波, 裴荣富, 邱小平, 等. 福建紫金山矿田中生代岩浆岩演化序列研究[J]. 地球学报, 2013,34(4):437-446.
|
[14] |
Yu B, Pei R F, Qiu X P, et al. The evolution series of mesozoic magmatic rocks in the Zijinshan orefield, Fujian province[J]. Acta Geoscientica Sinica, 2013,34(4):437-446.
|
[15] |
林东燕, 陈郑辉. 福建上杭拉分盆地与紫金山铜金矿床成矿关系[J]. 西安科技大学学报, 2011,31(4):438-442.
|
[15] |
Lin D Y, Cheng Z H. Relationship between Shanghang pull-apart basin in Fujian and Zijinshan copper-gold deposit mineralization[J]. Journal of Xi’an University of Science and Technology, 2011,31(4):438-442.
|
[16] |
王少怀, 裴荣富, 曾宪辉, 等. 再论紫金山矿田成矿系列与成矿模式[J]. 地质学报, 2009,83(2):145-157.
|
[16] |
Wang S H, Pei R F, Zeng X H, et al. Metallogenic series and model of the Zijinshan mining field[J]. Acta Geoscientica Sinica, 2009,83(2):145-157.
|
[17] |
张德全, 佘宏全, 阎升好, 等. 福建紫金山地区中生代构造环境转换的岩浆岩地球化学证据[J]. 地质论评, 2001,3(6):608-616.
|
[17] |
Zhang D Q, Sheng H Q, Yan S H, et al. Geochemistry of mesozoic magmatites in the Zijinshan regine and implication on regional tectonal inversion[J]. Geological Review, 2001,23(6):608-616.
|
[18] |
黄仁生. 福建省紫金山铜金矿床成矿物理化学条件的研究[J]. 福建地质, 1994,26(3):159-173.
|
[18] |
Huang R S. On the metallogenic physicochemical conditions of the Zijinshan copper-gold deposit in Fujian Province[J]. Geology of Fujian, 1994,26(3):159-173.
|
[19] |
陶建华, 许春林. 福建上杭紫金山铜金矿床控岩控矿构造分析[J]. 福建地质, 1992,26(3):186-203.
|
[19] |
Tao J H, Xu C L. Discussion on the rock and ore-controlling structures of the Zijinshan Copper-gold deposit in Shanghang country, Fujian Province[J]. Geology of Fujian, 1992,26(3):186-203.
|
[20] |
潘天望, 袁远, 吕勇, 等. 福建紫金山矿田早白垩世以来构造演化和成岩成矿时空格架[J]. 地质力学学报, 2019,25(1):61-76.
|
[20] |
Pan T W, Yuan Y, Lyu Y, et al. The early-cretaceous tectonic evolution and the spatial-temporal framework of magmatismmine ralization in Zijinshan ore-field,Fujian province[J]. Journal of Geomechanics, 2019,25(1):61-76.
|
[21] |
陈素余, 王少怀, 黄宏祥. 紫金山深部铜矿物特征研究[J]. 矿床地质, 2014,33(S1):667-668.
|
[21] |
Chen S Y, Wang S H, Huang H X. Study on the characteristics of deep copper deposits in Zijinshan[J]. Mineral Deposite, 2014,33(S1):667-668.
|
[22] |
Zhong J, Chen Y J, Pirajno J, et al. Geology geochronology,fluid inclusion and H-O isotope geochemistry of the Luoboling porphyry Cu-Mo deposit, Zijinshan orefield, Fujian Province, China[J]. Ore Geology Reviews, 2014,57:61-77.
|
[23] |
赖晓丹, 祁进平, 邱小平, 等. 福建省上杭县罗卜岭斑岩型铜钼矿床含矿裂隙研究[J]. 矿床地质, 2012,31(S1):853-854.
|
[23] |
Lai X D, Qi J P, Qiu X P, et al. Study on ore-bearing fractures of Luobaling porphyry copper-molybdenum deposit in Shanghang County, Fujian Province[J]. Mineral Deposite, 2012,31(S1):853-854.
|
[24] |
郭祥清. 福建上杭县罗卜岭斑岩型铜矿蚀变、矿化分带及找矿标志[J]. 世界有色金属, 2020,11(8):58-61.
|
[24] |
Guo X Q. The characteristics of alteration and mineralization zone and the prospecting indicator in the Luoboling porphyry Cu-Mo deposit, Shanghang, Fujian[J]. World Nonferrous Metals, 2020,11(8):58-61.
|
[25] |
王进燚, 祁进平, 李晶, 等. 罗卜岭斑岩铜(钼)矿床围岩蚀变及矿化特征探讨[J]. 矿物学报, 2013,33(S2):833-834.
|
[25] |
Wang J Y, Qi J P, Li J, et al. Study on alteration and mineralization of surrounding rock of Luobling porphyry copper (molybdenum) deposit[J]. Acta Geoscientica Sinica, 2013,33(S2):833-834.
|
[26] |
郭祥清, 祁进平. 福建上杭罗卜岭铜(钼)矿床地质特征及找矿标志[J]. 矿物学报, 2013,33(S2):903-904.
|
[26] |
Guo X Q, Qi J P. Geological characteristics and prospecting criteria of Luobuling copper (molybdenum) deposit in Shanghang, Fujian[J]. Acta Geoscientica Sinica, 2013,33(S2):903-904.
|
[27] |
王学求, 刘占元, 叶荣, 等. 新疆金窝子矿区深穿透地球化学对比研究[J]. 物探与化探, 2003,27(4):247-254.
|
[27] |
Wang X Q, Liu Z Y, Ye R, et al. Deep-penetrating geochemistry: a comparative study in the Jinwozi gold ore district, Xinjiang[J]. Geophysical and Geochemical Exploration, 2003,27(4):247-254.
|
[28] |
刘汉粮, 王学求, 张必敏, 等. 沙泉子隐伏铜镍矿地球化学勘查方法试验[J]. 物探与化探计算技术, 2014,36(6):200-206.
|
[28] |
Liu H L, Wang X Q, Zhang B M, et al. Geochemical exploration for concealed Cu-Ni deposit, Shaquanzi, Xinjiang[J]. Computational Techniques for Geophysical and Geochemical Exploration, 2014,36(6):200-206.
|
[29] |
唐金荣, 吴传璧, 施俊法. 深穿透地球化学迁移机理与方法技术研究新进展[J]. 地质通报, 2007,12(12):1579-1590.
|
[29] |
Tang J R, Wu C B, Shi J F. Rrecent progress in the study of the deep-penetrating geochemical migration mechanisms and methods[J]. Geological Bulletin of China, 2007,12(12):1579-1590.
|
[30] |
刘汉粮, 张必敏, 刘东盛, 等. 土壤微细粒全量测量在甘肃花牛山矿区的应用[J]. 物探与化探, 2016,40(1):33-39.
|
[30] |
Liu H L, Zhang B M, Liu D S, et al. The application of soil geochemical measurement method to the Huaniushan Pb-Zn deposit, Gansu Province[J]. Geophysical and Geochemical Exploration, 2016,40(1):33-39.
|
[31] |
韩志轩, 张必敏, 乔宇, 等. 隐伏铜矿区土壤微细粒测量有效性实验——以江西通江岭铜矿为例[J]. 地球学报, 2020,41(6):977-986.
|
[31] |
Han Z X, Zhang B M, Qiao Y, et al. Validity experiments of fine-grained soil geochemical survey for exploring concealed copper deposits: A case study in the Tongjiangling copper deposit, Jiangxi province[J]. Acta Geoscientica Sinica, 2020,41(6):977-986.
|
[32] |
陈振金, 陈春秀, 刘用清, 等. 福建省土壤元素背景值及其特征[J]. 中国环境监测, 1992,12(3):107-110.
|
[32] |
Chen Z J, Chen C X, Liu Y Q, et al. Background values and characteristics of soil elements in Fujian province[J]. Environmental Monitoring in China, 1992,12(3):107-110.
|
[33] |
Zhang B M, Wang X Q, Ye R, et al. Geochemical exploration for concealed depositesat the periphery of the Zijinshan copper-gold mine, south-estern China[J]. Journal of Geochemical Exploration, 2015,157:184-193.
|
[34] |
赵辰, 文美兰, 吴彦彬, 等. 碳硫分析在不同地球化学覆盖区的找矿应用研究[J]. 桂林理工大学学报, 2021,4(1):42-46.
|
[34] |
Zhao C, Wen M L, Wu Y B, et al. Prospecting application of carbon-sulfur analysis in different geochemical cover areas[J]. Journal of Guilin University of Technology, 2021,4(1):42-46.
|
[35] |
宓奎峰, 柳振江, 李春风, 等. 内蒙古乌努格吐山大型铜钼矿床元素迁移及成矿过程探讨[J]. 中国地质, 2014,41(4):1270-1287.
|
[35] |
Mi K F, Liu Z J, Li C F, et al. Metallogenic processes and migration of ore-forming elements in the Wunugetushan porphyry Cu-Mo deposit, Inner Mongolia[J]. Geological in China, 2014,41(4):1270-1287.
|
[36] |
宋雷鹰. 内蒙古哈如勒敖包矿区金属活动态测量的试验效果[J]. 科技情报开发与经济, 2010,20(7):174-176.
|
[36] |
Song L Y. Analysis on the test results of MOMEO of Haruleaobao mining area, Xinbaerhu right banner, Inner Mongolia[J]. Sci-Tech Information Development & Economy, 2010,20(7):174-176.
|
[37] |
杨刚刚, 李方林, 张雄华. 金属活动态测量在东戈壁钼矿找矿效果研究[J]. 新疆地质, 2018,36(2):182-188.
|
[37] |
Yang G G, Li F L, Zhang X H. The prospecting effect research of East gobi molybdenum ore using MOMEO[J]. Xinjiang Geology, 2018,36(2):182-188.
|
[38] |
常华进, 储雪蕾, 黄晶, 等. 沉积环境细菌作用下的硫同位素分馏[J]. 地质评论, 2007,53(6):807-813.
|
[38] |
Chang H J, Chu X L, Huang J, et al. Sulfur isotope fractionation accompanying bacterial action under sedimentary condition[J]. Geological Review, 2007,53(6):807-813.
|
[39] |
Habick K, Canfield D E, Rathemeier J. Sulfur isotope fractionation during bacterial reduction and disproportionation of thiosulfate and sulfite[J]. Geochimica et Cosmochimica Acta, 1998,62(15):2585-2595.
|
[40] |
李斌. 福建紫金山矿田中生代岩浆演化与铜金钼成矿作用地球化学研究[D]. 南京:南京大学, 2015.
|
[40] |
Li B. Geochemistry of mesozoic magmatic rocks and related Cu-Au-Mo minerralizations in the Zijinshan ore field of Fujian Province[D]. Nanjing:Nanjing University, 2015.
|
[41] |
杜思敏. 硫同位素在示踪金属矿床成矿物质来源中的应用[J]. 化工矿产地质, 2019,41(3):296-310.
|
[41] |
Du S M. Application of sulphur isotope in tracing ore-forming material sources of metal deposites[J]. Geology of Chemical Minerals, 2019,41(3):296-310.
|
[1] |
ZHANG Zhe-Huan, DAI Hui-Min, SONG Yun-Hong, YANG Jia-Jia. Geochemical characteristics of some soil trace elements in the Wuyuer River Basin, Heilongjiang Province[J]. Geophysical and Geochemical Exploration, 2022, 46(5): 1097-1104. |
[2] |
LI Qiu-Yan, ZHANG Yi-He, WEI Ming-Hui, HE Peng-Fei. Spatial distribution of the soil trace elements in Hailun City[J]. Geophysical and Geochemical Exploration, 2022, 46(5): 1114-1120. |
|
|
|
|