|
|
Design of multi-channel pulse amplitude analyzer based on linear discharge |
ZHOU Neng1( ), DENG Ke-Qing2( ), ZHUANG Wen-Ying3 |
1. Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China 2. Shanghai Hexu Information Technology Company,Beijing 100102,China 3. School of Information Management, Beijing Information Science and Technology University,Beijing 100192,China |
|
|
Abstract Multi-channel gamma-ray spectrometers are necessary for measuring natural and artificial radionuclides. The core of the multi-channel gamma-ray spectrometers is the multi-channel pulse amplitude analysis, which determines the resolution and analysis accuracy of radionuclides. This study introduces the working principle of a multi-channel pulse amplitude analyzer based on linear discharge and describes the methods for analyzing pulse amplitude and obtaining spectrum peaks. Secondly, this study details the design methods of eight important parts of the multi-channel pulse amplitude analyzer, including the design basis, design idea, and feasible schemes. Finally, this study details the logical sequence diagram of the analyzer, laying a foundation for readers to design a multi-channel pulse amplitude analyzer. Using the working principle, design method, and working logic sequence diagram presented in this paper, as well as modern high technology, readers can develop a new type of modern multi-channel pulse analyzer with uniform channel width, excellent differential nonlinearity, and improved resolution of radionuclides, thus better serving the society using gamma-ray spectrum data with higher energy resolution and high measurement accuracy.
|
Received: 15 April 2021
Published: 25 February 2022
|
|
Corresponding Authors:
DENG Ke-Qing
E-mail: 2560202313@qq.com;965381918@qq.com
|
|
|
|
|
The principle of analog-to-digital conversion of linear discharge method
|
|
Design block diagram of pulse amplitude analyzer of linear discharge method
|
|
Simplified logic timing diagram of pulse amplitude analyzer work
|
|
Measured amplitude response and best amplitude response
|
[1] |
周锡华, 乔广志. 新一代航空多道伽马能谱仪的引进和初步应用[J]. 物探与化探, 2002,26(4):318-320.
|
[1] |
Zhou X H, Qiao G Z. The introduction and application of the new generation airborne multi-channel gamma spectrometer[J]. Geophysical and Geochemical Exploration, 2002,26(4):318-320.
|
[2] |
International Atomic Energy Agency. Guidelines for radioelement mapping using gamma ray spectrometry data [R]. IAEA-TECDOC-1363, 2003.
|
[3] |
徐静. 基于嵌入式Linux的便携式多道γ能谱仪的设计与实现[D]. 北京:中国地质大学(北京), 2009.
|
[3] |
Xu J. The design and implementation of portable multi-channel gamma spectrometer [D]. China University of Geosciences (Beijing), 2009.
|
[4] |
米耀辉, 周锡华, 姜作喜, 等. 基于交叉采样技术的多道脉冲幅度分析仪设计[J]. 核电子学与探测技术, 2014,34(12):1469-1473.
|
[4] |
Mi Y H, Zhou X H, Jiang Z X, et al. Design of multi-channel pulse amplitude analyzer based on interleaved sampling technology[J]. Nuclear Electronics & Detection Technology, 2014,34(12):1469-1473.
|
[5] |
赖万昌, 葛良全, 吴永鹏, 等. 新型便携式微机多道γ能谱仪的研制[J]. 核电子学与探测技术, 2004,9(1):37-40.
|
[5] |
Lai W C, Ge L Q, Wu Y P, et al. A new portable multi-channel γ spectrometry based on inserted PC104 computer[J]. Nuclear Electronics & Detection Technology, 2004,9(1):37-40.
|
[6] |
姜赞成, 方方, 丁卫撑, 等. 低功耗手持式一体化多道γ能谱仪的设计[J]. 核电子学与探测技术, 2008(11):1223-1225.
|
[6] |
Jiang Z C, Fang F, Ding W C, et al. A design of hand-held gamma spectrometer with low power consumption[J]. Nuclear Electronics & Detection Technology, 2008(11):1223-1225.
|
[7] |
侯胜利, 攀卫花. 室内多道γ射线能谱仪(NaI(Tl))谱线分析[J]. 同位素, 2005(5):63-66.
|
[7] |
Hou S L, Pan W H. Spectrum analysis with indoor multi-channels gamma-rays spectrometer (NaI(Tl))[J]. Journal of Isotopes, 2005(5):63-66.
|
[8] |
王蓬, 周锡华, 姜作喜, 等. 基于数字脉冲分析器的伽马能谱仪设计[J]. 物探与化探, 2013,37(2):291-294.
|
[8] |
Wang P, Zhou X H, Jiang Z X, et al. The design of gamma-ray spectrometer based on digital pluse amplitude analyzer[J]. Geophysical and Geochemical Exploration, 2013,37(2):291-294.
|
[9] |
曾国强, 葛良全, 熊盛青, 等. 数字技术在航空伽马能谱仪中的应用[J]. 物探与化探, 2010,34(2):209-213.
|
[9] |
Zeng G Q, Ge L Q, Xiong S Q, et al. The application of digital spectroscopic technique to airborne gamma-ray investigation[J]. Geophysical and Geochemical Exploration, 2010,34(2):209-213.
|
[10] |
王彦, 贺康政, 黄松. 基于FPGA的多道脉冲幅度分析器的设计[J]. 核电子学与探测技术, 2005,35(4):416-419.
|
[10] |
Wang Y, He K Z, Huang S, et al. Design of multichannel pulse amplitude analyzer based on FPGA[J]. Nuclear Electronics & Detection Technology, 2005,35(4):416-419.
|
[11] |
屈建石, 王晶宇. 多道脉冲分析系统原理[M]. 北京: 原子能出版社, 1987.
|
[11] |
Qu J S, Huang J Y. Principle of multi-channel pulse analysis system [M]. Beijing: Atomic Energy Press, 1987.
|
[12] |
王经瑾, 范天民, 钱永庚, 等. 核电子学[M]. 北京: 原子能出版社, 1985.
|
[12] |
Wang J J, Fan T M, Qian Y G, et al. Nuclear electronics [M]. Beijing: Atomic Energy Press, 1985.
|
[13] |
吴永鹏, 赖万昌, 葛良全, 等. 多道伽马能谱仪中的特征峰稳谱技术[J]. 物探与化探, 2003,27(2):131-134.
|
[13] |
Wu Y P, Lai W C, Ge L Q, et al. A new spectrum stabilization technique in portableγ-ray spectrometry[J]. Geophysical and Geochemical Exploration, 2003,27(2):131-134.
|
[14] |
庞巨丰. γ能谱数据分析[M]. 西安: 陕西科学技术出版社, 1990.
|
[14] |
Pang J F. γ energy spectrum data analysis [M]. Xi’an: Shaanxi Science and Technology Press, 1990.
|
[15] |
何为民, 奚大顺. 智能放射性勘查仪器[M]. 北京: 原子能出版社, 1994.
|
[15] |
He W M, Xi D S. Intelligent radio-logical survey instrument [M]. Beijing: Atomic Energy Press, 1994.
|
[1] |
ZHAO Bao-Feng, WANG Qi-Nian, GUO Xin, GUAN Da-Wei, CHEN Tong-Gang, FANG Wen. Gravity survey and audio magnetotellurics-based insights into the deep structures and geothermal resource potential of the Rucheng Basin[J]. Geophysical and Geochemical Exploration, 2023, 47(5): 1147-1156. |
[2] |
HE Sheng, WANG Wan-Ping, DONG Gao-Feng, NAN Xiu-Jia, WEI Feng-Feng, BAI Yong-Yong. Application of the opposing-coils transient electromagnetic method in urban geological surveys[J]. Geophysical and Geochemical Exploration, 2023, 47(5): 1379-1386. |
|
|
|
|