|
|
A new method for TOC logging evaluation in shale gas for horizontal well |
LIU Wei-Nan1,2( ), ZHANG Chao-Mo1( ), ZHU Lin-Qi3, HU Song4, KONG Zheng5, DENG Rui1 |
1. Key Laboratory of Exploration Technologies for Oil and Gas Resources, Yangtze University, Wuhan 430100, China 2. Shenzhen Branch, CNOOC China Co., Ltd., Shenzhen 518054, China 3. Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China 4. Exploration & Production Research Institute, SINOPEC, Beijing 100083, China 5. Exploration and Development Research Institute, Shengli Oilfield company, SINOPEC, Dongying 257099, China |
|
|
Abstract Due to the lack of layer, the constant change in borehole formation, the fewer logging curves in key intervals, the complex borehole environment, the complex relationship between logging response and reservoir parameters and some other factors, the logging interpretation of horizontal well in shale gas is difficult. Aimed at tackling this problem, the authors adopted the evaluation technique flow of "Formation method of horizontal well logging-Analysis of response differences between horizontal wells and between horizontal and vertical wells-Correction of horizontal well curves-Parameter evaluation method based on vertical wells" to evaluate TOC in shale gas for horizontal wells. In the logging evaluation, in view of the complex response law, the histogram method is used to analyze the logging response law and, in consideration of the fact that there are fewer logging curves for horizontal wells in the logging evaluation, a dual information fusion method is proposed based on combination with curve overlap method so as to comprehensively utilize the logging curve information. The results show that this method can correct horizontal well logging curves based on fully analyzing the logging response differences, and the dual information fusion method has the advantages of full use of logging information, high accuracy of evaluation method and simple operation.
|
Received: 16 April 2020
Published: 29 April 2021
|
|
Corresponding Authors:
ZHANG Chao-Mo
E-mail: lwn1995@126.com;zhang7801@263.net
|
|
|
|
|
The flow chart of new method for evaluating horizontal well parameters in Y area
|
|
The contact relationship between borehole trajectory and formation of horizontal well Y3
|
|
The logging response histogram of whole horizontal wells in Y area
|
|
The logging response histogram of upper edge of peak I for horizontal wells in Y area
|
井名 | 深度范围斜深/m | Y1井 | 4 075.0~5 577.7 | Y2井 | 5 195.0~5 488.7 | Y3井 | 5 656~5 873 |
|
The depth of upper edge of peak I in horizontal well section of Y area
|
|
The logging response histogram of vertical well and horizontal well in upper edge of peak I of Y3
|
参数 | 直井峰值 | 水平井峰值 | AC/(μs·ft-1) | 76 | 71 | RD/(Ω·m) | 22.4 | 25.1 | GR/API | 160 | 150 | KTH/API | 90 | 100 |
|
Response values for upper edge of peak I of horizontal and vertical wells in Y3
|
参数 | AC/(μs·ft-1) | RD/(Ω·m) | GR/API | KTH/API | 校正量 | 5 | -2.7 | 10 | -10 |
|
Statistical for correction of logging response of horizontal well Y3
|
名称 | 模型表达式 | 单ΔlogR模型 | TOC_ΔlogR=1.66ΔlogR+4.26 | 单DC模型 | TOC_DC=11.92DC+1.095 | 双重融合模型 | TOC = 0.32TOC_ΔlogR+0.68TOC_DC |
|
TOC computing model of Y area
|
|
TOC prediction results of vertical well Y3
|
模型 | 绝对误差/% | 相对误差/% | 单ΔlogR TOC预测模型 | 1.07 | 35.91 | 单DC TOC预测模型 | 0.41 | 13.76 | 双重融合TOC预测模型 | 0.16 | 5.36 |
|
Error statistics of TOC of vertical well in Y area
|
|
Histogram of TOC calculation results for vertical and horizontal wells in Y area
|
[1] |
林永学, 王显光, 李荣府. 页岩气水平井低油水比油基钻井液研制及应用[J]. 石油钻探技术, 2016,44(2):28-33.
|
[1] |
Lin Y S, Wang X G, Li R F. Development of oil-based drilling fluid with low oil-water ratio and its application to drilling horizontal shale gas wells[J]. Petroleum Drilling Techniques, 2016,44(2):28-33.
|
[2] |
高德利. 大型丛式水平井工程与山区页岩气高效开发模式[J]. 天然气工业, 2018,8(8):1-7.
|
[2] |
Gao D L. A high-efficiency development mode of shale gas reservoirs in mountainous areas based on large cluster horizontal well engineering[J]. Natural Gas Industry, 2018,8(8):1-7.
|
[3] |
肖文, 文凯民, 谢川, 等. 页岩气水平井钻完井技术研究[J]. 科技展望, 2015(27):116-120.
|
[3] |
Xiao W, Wen K M, Xie C, et al. Techniques of shale gas horizontal well drilling and completion[J]. Science and Technology, 2015(27):116-120.
|
[4] |
任岚, 林然, 赵金洲, 等. 页岩气水平井增产改造体积评价模型及其应用[J]. 天然气工业, 2018,38(8):47-56.
|
[4] |
Ren L, Lin R, Zhao J Z, et al. A stimulated reservoir volume (SRV) evaluation model and its application to shale gas well productivity enhancement[J]. Natural Gas Industry, 2018,38(8):47-56.
|
[5] |
周灿灿, 王昌学. 水平井测井解释技术综述[J]. 地球物理学进展, 2006,21(1):152-160.
|
[5] |
Zhou C C, Wang C X. Technology review on the log interpretation of horizontal well[J]. Process in Geophysics, 2006,21(1):152-160.
|
[6] |
程庆昭, 魏修平, 宿伟. 水平井测井解释评价技术综述[J]. 非常规油气, 2016,3(2):93-98.
|
[6] |
Cheng Q Z, Wei X P, Su W. Summary of horizontal well logging interpretation and evaluation technology[J]. Unconventional Oil and Gas, 2016,3(2):93-98.
|
[7] |
凡刚. 水平井测井解释在江苏油田的应用[J]. 中外能源, 2008,13(6):55-58.
|
[7] |
Fan G. Application of logging interpretation for horizontal well in Jiangsu Oilfield[J]. Sino-Global Energy, 2008,13(6):55-58.
|
[8] |
陈元千, 汤晨阳, 陈奇. 等温吸附量计算方法的推导及应用[J]. 油气地质与采收率, 2018,25(6):56-62.
|
[8] |
Chen Y Q, Tang C Y, Chen Q. Derivation and application of isothermal adsorption rate calculation method[J]. Petroleum Geology and Recovery Efficiency, 2018,25(6):56-62.
|
[9] |
李英杰, 左建平, 姚茂宏, 等. 页岩气超临界等温吸附模型及储量计算优化[J]. 中国矿业大学学报, 2019,48(2):328-338.
|
[9] |
Li Y J, Zuo J P, Yao M H, et al. Improved shale gas supercritical isothermal model and the calculation method of geologic reserve[J]. Journal of China University of Mining and Technology, 2019,48(2):328-338.
|
[10] |
曲鸿雁, 彭岩, 刘继山, 等. 气体吸附对页岩裂缝表观渗透率和页岩气采收率的影响[J]. 中国科学:技术科学, 2018,48(8):891-900.
|
[10] |
Qu H Y, Peng Y, Liu J S, et al. Impact of gas adsorption on apparent permeability of shale fracture and shale gas recovery rate[J]. Scientia Sinica Technologica, 2018,48(8):891-900.
|
[11] |
汪中浩, 易觉非, 赵乾富, 等. 水平井测井资料地质解释应用[J]. 江汉石油学院学报, 2004,26(3):70-72.
|
[11] |
Wang Z H, Yi J F, Zhao Q F, et al. Application of geologic interpretation of horizontal well logging data[J]. Journal of Jianghan Petroleum Institute, 2004,26(3):70-72.
|
[12] |
吕萍, 张永敏. 水平井咨询系统的原理与应用[J]. 测井技术, 2004,28(5):455-457.
|
[12] |
Lyu P, Zhang Y M. Theory and application of horizontal well advisement system[J]. Well Logging Technology, 2004,28(5):455-457.
|
[13] |
赵军, 海川. 水平井测井解释中井眼轨迹与油藏关系分析技术[J]. 测井技术, 2004,28(2):145-147.
|
[13] |
Zhao J, Hai C. The analysis technique of relationship between well trajectory and reservoir in horizontal log interpretation[J]. Well Logging Technology, 2004,28(2):145-147.
|
[14] |
胡松, 周灿灿, 王昌学, 等. 泥页岩油气藏水平井评价对策与实践[J]. 地球物理学进展, 2013,28(4):1877-1885.
|
[14] |
Hu S, Zhou C C, Wang C X, et al. The strategies ad practice of horizontal well evaluation in shale hydrocarbon reservoir[J]. Progress in Geophysics, 2013,28(4):1877-1885.
|
[15] |
余义常, 徐怀民, 江同文, 等. 海相碎屑岩水平井隔夹层识别与表征——以哈得逊油田东河砂岩为例[J]. 中国矿业大学学报, 2018,47(6):1400-1411.
|
[15] |
Yu Y C, Xu H M, Jiang T W, et al. Identification and characterization of interlayers on horizontal well in marine clastic reservoirs: A case study of Donghe sandstone in Hadeson oilfield, Tarim basin[J]. Journal of China University of Mining and Technology, 2018,47(6):1400-1411.
|
[16] |
时建超, 屈雪峰, 雷启鸿, 等. 致密油水平井声波时差测井影响因素分析及测井响应特征研究——以鄂尔多斯盆地陇东地区长7储层为例[J]. 西北大学学报:自然科学版, 2017,47(4):585-592.
|
[16] |
Shi J C, Qu X F, Lei Q H, et al. The influencing factors and response characteristics of acoustic time logging in tight oil horizontal well: A case study of Chang 7 reservoir in Longdong Area of Ordos Basin[J]. Journal of Northwest University:Natural Science Edition, 2017,47(4):585-592.
|
[17] |
黄兵, 万昕, 王明华. 富顺永川区块页岩气水平井优快钻井技术研究[J]. 钻采工艺, 2015,38(2):14-16.
|
[17] |
Huang B, Wang X, Wang M H. Research on optimized shale gas horizontal well drilling technologies in Fushun-Yongchuan Block[J]. Drilling and Production Technology, 2015,38(2):14-16.
|
[18] |
董大忠, 施振生, 管全中, 等. 四川盆地五峰组—龙马溪组页岩气勘探进展、挑战与前景[J]. 天然气工业, 2018,38(4):67-76.
|
[18] |
Dong D Z, Shi Z S, Guang Q Z, et al. Process, challenges and prospects of shale gas exploration in the Wufeng-Longmaxi reservoirs in the Sichuan Basin[J]. Natural Gas Industry, 2018,38(4):67-76.
|
[19] |
王开亮, 李凯强, 王励坤, 等. 四川盆地东缘石柱地区五峰—龙马溪组页矿物组分及含气性特征[J]. 兰州大学学报:自然科学版, 2018,54(3):285-302.
|
[19] |
Wang K L, Li K Q, Wang L K, et al. Mineral composition and gas-bearing characteristics of Wufeng-Longmaxi shale in Shizhu area, eastern Sichuan Basin[J]. Journal of Lanzhou University: Natural Sciences, 2018,54(3):285-302.
|
[20] |
郭洪志. WY地区页岩气藏测井精细评价[D]. 成都:西南石油大学, 2014.
|
[20] |
Guo H Z. Comprehensive logging evaluation for shale gas reservoirs in WY area[D]. Chengdu: Southwest Petroleum University, 2014.
|
[21] |
熊镭, 张超谟, 张冲, 等. A地区页岩气储层总有机碳含量测井评价方法研究[J]. 岩性油气藏, 2014,26(3):74-78+83.
|
[21] |
Xiong L, Zhang C M, Zhang C, et al. Research on logging evaluation method of TOC content of shale gas reservoir in A area[J]. Lithology Reservoirs, 2014,26(3):74-78+83.
|
[22] |
袁超, 周灿灿, 胡松, 等. 地层有机碳含量测井评价方法综述[J]. 地球物理学进展, 2014,29(6):2831-2837.
|
[22] |
Yuan C, Zhou C C, Hu S, et al. Summary on well logging evaluation method of total organic carbon content in formation[J]. Process in Geophysics, 2014,29(6):2831-2837.
|
[23] |
陈祖庆. 海相页岩TOC地震定量预测技术及其应用——以四川盆地焦石坝地区为例[J]. 天然气工业, 2014,34(6):24-29.
|
[23] |
Chen Z Q. Quantitative seismic prediction technique of marine shale TOC and its application: A case from the Longmaxi shale play in the Jiaoshiba area, Sichuan Basin[J]. Natural Gas Industry, 2014,34(6):24-29.
|
[24] |
孟召平, 郭彦省, 刘尉. 页岩气储层有机碳含量与测井参数的关系及预测模型[J]. 煤炭学报, 2015,40(2):247-253.
|
[24] |
Meng Z P, Guo Y S, Liu W. Relationship between organic carbon content of shale gas reservoirs and logging parameters and its prediction model[J]. Journal of China Coal Society, 2015,40(2):247-253.
|
[25] |
王建国, 李忠刚, 朱智, 等. 基于测井方法的页岩有机碳含量计算[J]. 大庆石油地质与开发, 2015,34(3):170-174.
|
[25] |
Wang J G, Li Z G, Zhu Z, et al. Calculation of the shale TOC extents based on the well logging methods[J]. Petroleum Geology and Oilfield Development in Daqing, 2015,34(3):170-174.
|
[26] |
别凡, 万宇, 聂昕, 等. 页岩气储层总有机碳含量测井评价新方法[J]. 测井技术, 2016,40(6):736-738.
|
[26] |
Bie F, Wan Y, Nie X, et al. A new method of TOC content evaluation in shale gas reservoirs with log data[J]. Well Logging Technology, 2016,40(6):736-738.
|
[27] |
Passey Q, Creaney S, Kulla J, et al. A practical model for organic richness from porosity and resistivity logs[J]. AAPG, 1990,74(12):1777-1794.
|
[28] |
Zhao P, Mao Z, Huang Z, et al. A new method for estimating total organic carbon content from well logs[J]. AAPG, 2017,100(8):1311-1327.
|
[29] |
Xu J, Li Y, Zhang B, et al. A logging-curve separation scale overlay method for total-organic-carbon estimation in organic-rich shale reservoirs[J]. Interpretation, 2017,5(3):T387-T398.
|
[1] |
LI Chuan-Jin, WANG Qiang, JIAN Xiang, ZHENG Tao, ZHAN Su-Hua, CHEN Shao-Wei. Microtremor signal simulation and its application in microtremor exploration[J]. Geophysical and Geochemical Exploration, 2023, 47(4): 1040-1047. |
[2] |
YU Chang-Heng, ZHENG Jian, ZHANG Xu-Lin, ZHOU Hao, WANG An-Ping, LIU Lei, LI Yi. Application of the integrated engineering geophysical exploration technology in the predrilling stage of shale gas well platforms in southern Sichuan Province[J]. Geophysical and Geochemical Exploration, 2023, 47(1): 99-109. |
|
|
|
|