|
|
The effect of soaking or not on the density determination of rock and ore |
ZHANG Bai-Fan1( ), XIAO Feng1, LI Yi-Ke2,3, KE Chang-Hui2,3 |
1. College of Geo-Exploration Science and Technology, Jilin University, Changchun 130026, China 2. Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China 3. MNR Key Laboratory of Metallogeny and Mineral Assessment, Beijing 100037, China |
|
|
Abstract Rock density determination is an important method to obtain accurate density values, and it is also an indispensable parameter for topographic correction and middle layer correction of gravity measurement results. The higher the accuracy of density measurement, the higher the accuracy of geological interpretation. However, there are different opinions on whether soaking treatment is needed before the determination of rock density in different versions of measurement specification. In this paper, we taking 12 kinds of rock (ore) specimens in Bayan Obo mining area as an example, comparing the density changes before and after soaking. It is concluded that the density of rock increases in varying degrees after soaking, except mica-type iron ore. For rocks (ores) with developed pores or fissures, the percentage of density difference after soaking is greater than 0.5%, and the density difference percentage will be greater than 0.5%. However, for the rock (ore) with dense structure, the influence of soaking on the density measurement is less than 2 times of the measurement error, which is negligible.
|
Received: 18 June 2020
Published: 01 March 2021
|
|
|
|
|
主要参数 | 技术指标 | 质量测量范围/g | 0.01~600 | 质量分辨率/g | 0.001 | 密度精度/(g·cm-3) | ±0.001 | 测量时间/s | 约10 |
|
Basic technical parameters of MH-600Z electronic density meter
|
岩(矿)石种类 | 块 数 | 浸泡前密度/(g·cm-3) | 浸泡后密度/(g·cm-3) | 密度差/ (g·cm-3) ρ1-ρ0 | 密度差百 分比/% (ρ1-ρ0)/ρ0 | 最 大 值 | 最 小 值 | 平均 密度 ρ0 | 标 准 差 | 最 大 值 | 最 小 值 | 平均 密度 ρ0 | 标 准 差 | 砂岩 | 51 | 2.892 | 2.556 | 2.646 | 0.068 | 2.888 | 2.592 | 2.656 | 0.065 | 0.010 | 0.38 | 板岩* | 98 | 3.085 | 2.114 | 2.687 | 0.174 | 3.080 | 2.201 | 2.700 | 0.158 | 0.013 | 0.48 | 片麻岩 | 28 | 2.788 | 2.553 | 2.641 | | 2.798 | 2.570 | 2.649 | | 0.008 | 0.30 | 花岗岩 | 40 | 2.766 | 2.494 | 2.580 | 0.048 | 2.767 | 2.519 | 2.593 | 0.051 | 0.013 | 0.50 | 闪长岩 | 3 | 2.773 | 2.712 | 2.748 | | 2.773 | 2.712 | 2.751 | | 0.003 | 0.11 | 斑岩 | 4 | 2.600 | 2.528 | 2.563 | | 2.617 | 2.561 | 2.582 | | 0.019 | 0.74 | 富钾板岩 | 31 | 2.912 | 2.548 | 2.666 | 0.069 | 2.931 | 2.549 | 2.669 | 0.071 | 0.003 | 0.11 | 白云石碳酸岩* | 51 | 3.319 | 2.911 | 3.056 | 0.100 | 3.318 | 2.907 | 3.059 | 0.098 | 0.003 | 0.10 | 赤铁矿石 | 43 | 4.773 | 3.064 | 3.883 | 0.341 | 4.782 | 3.085 | 3.906 | 0.347 | 0.023 | 0.59 | 磁铁矿石* | 60 | 4.716 | 3.409 | 3.788 | 0.303 | 4.758 | 3.401 | 3.789 | 0.324 | 0.001 | 0.03 | 闪石型铁矿石* | 31 | 4.178 | 3.391 | 3.816 | 0.191 | 4.187 | 3.389 | 3.818 | 0.191 | 0.002 | 0.05 | 霓石型铁矿石 | 32 | 3.976 | 3.260 | 3.609 | 0.171 | 4.000 | 3.267 | 3.619 | 0.170 | 0.010 | 0.28 | 萤石型铁矿石* | 32 | 3.819 | 2.873 | 3.291 | 0.191 | 3.826 | 2.875 | 3.292 | 0.192 | 0.001 | 0.03 | 云母型铁矿石* | 30 | 4.292 | 3.025 | 3.544 | 0.306 | 4.277 | 3.032 | 3.536 | 0.305 | -0.008 | -0.23 | 鄂博层坡积层铁矿 | 31 | 2.762 | 2.182 | 2.482 | 0.125 | 2.831 | 2.277 | 2.531 | 0.125 | 0.049 | 1.97 |
|
Statistical table of density of rock (ore) before and after soaking
|
|
Average density difference between rock (ore)sample after and before soaking
|
|
Density comparison charts of Obo strata talus accumulation iron ore before and after soaking
|
|
The photo of Obo strata talus accumulation iron ore
|
|
Density comparison chart of hematite before and after soaking
|
|
Thin section photo of hematite
|
[1] |
焦新华, 吴燕冈. 重力与磁法勘探[M]. 北京: 地质出版社, 2009.
|
[1] |
Jiao X H, Wu Y G. Gravity and magnetic exploration[M]. Beijing: Geological Publishing House, 2009.
|
[2] |
Hinze W J, Aiken C, Brozena J, et al. New standards for reducing gravity data:the north American gravity database[J]. Geophysics, 2005,70(4):J25-J32.
|
[3] |
Blakely R J. Potential theory in gravity and magnetic application[M]. Cambridge: Cambridge University Press, 1996.
|
[4] |
Hinze W J, Von F R B, Saad A H. Gravity and magnetic exploration[M]. Cambridge: Cambridge University Press, 2012.
|
[5] |
普加忠, 张学良. 山区重力测量中选择校正密度值的一种方法[J]. 物探与化探, 1993,17(6):471-474.
|
[5] |
Pu J Z, Zhang X L. A method for choosing correction density value in gravity measurement in mountain area[J]. Geophysical and Geochemical Exploration, 1993,17(6):471-474.
|
[6] |
Oldenburg D W. The inversion and interpretation of gravity anomaly[J]. Geophysics, 1974,39(4):526-536.
|
[7] |
DZ/T 0171—1997 大比例尺重力勘查规范[S].
|
[7] |
DZ/T 0171—1997 Large-scale gravity survey specification[S].
|
[8] |
DD2006-03 岩矿石物性调查技术规程[S].
|
[8] |
DD2006-03 Specifications for physical property investigation of rock and ore[S].
|
[9] |
DZ/T 0004—2015 重力调查技术规范(1∶50 000)[S].
|
[9] |
DZ/T 0004—2015 The technical specification for gravity survey(1∶50 000)[S].
|
[10] |
DZ/T 0171—2017 大比例尺重力勘查规范[S].
|
[10] |
DZ/T 0171—2017 Large-scale gravity survey specification[S].
|
[11] |
姚玉来, 丁秋红, 王杰, 等. 内蒙古扎鲁特旗地区岩石物性特征[J]. 地质与资源, 2017,26(4):407-411.
|
[11] |
Yao Y L, Ding Q H, Wang J, et al. Physical properties of rocks in Jarudqi,Inner Mongolia[J]. Geology and Resources, 2017,26(4):407-411.
|
[12] |
郭友钊, 郭心玮, 李磊, 等. 东昆仑夏日哈木铜镍硫化物矿床岩矿石的密度特征与重力勘探问题[J]. 工程地球物理学报, 2016,13(1):1-6.
|
[12] |
Guo Y Z, Guo X W, Li L, et al. The density characteristics of rocks from Xiarihamu copper nickel sulfide deposit and problem of gravity exploration deployment in east Kunlun,Qinghai province[J]. Chinese Journal of Engineering Geophysics, 2016,13(1):1-6.
|
[13] |
罗方兵, 张兵, 闵刚, 等. 龙门山构造带北段岩石物性研究[J]. 物探化探计算技术, 2016,38(2):191-197.
|
[13] |
Luo F B, Zhang B, Min G, et al. The physical properties study of the northern section of Longmenshan tectonic belt[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2016,38(2):191-197.
|
[14] |
云美厚, 高君, 贺玉龙, 等. 储层速度和密度与孔隙度、泥质含量以及含水饱和度的关系[J]. 勘探地球物理进展, 2004,27(2):104-107.
|
[14] |
Yun M H, Gao J, He Y L, et al. Relations of velocity and density with porosity,clay content and water saturation in reservoirs[J]. Progress in Exploration Geophysics, 2004,27(2):104-107.
|
[15] |
雍世和, 洪有密. 测井资料综合解释与数字处理[M]. 北京: 石油工业出版社, 1982.
|
[15] |
Yong S H, Hong Y M. Comprehensive interpretation and digital processing of logging data[M]. Beijing: Petroleum Industry Press, 1982.
|
[16] |
张颖. 大学物理实验中测量结果及不确定度的有效位数[J]. 长春大学学报, 2007,17(4):24-25.
|
[16] |
Zhang Y. Significant figure of measurement result and its uncertainty in physics experiment[J]. Journal of Changchun University, 2007,17(4):24-25.
|
[1] |
LIU Qing-Yu, MA Ying, CHENG Li, SHEN Xiao, ZHANG Ya-Feng, MIAO Guo-Wen, HUANG Qiang, HAN Si-Qi. Density and spatial distribution of organic carbon in the topsoil of eastern Qinghai[J]. Geophysical and Geochemical Exploration, 2023, 47(4): 1098-1108. |
[2] |
ZHOU Jian-Bing, LUO Rui-Heng, HE Chang-Kun, PAN Xiao-Dong, ZHANG Shao-Min, PENG Cong. New geophysical evidence for karst water-bearing seepage pathways in the Xiaohewei reservoir,Wenshan City[J]. Geophysical and Geochemical Exploration, 2023, 47(3): 707-717. |
|
|
|
|