|
|
Imaging detection and recognition technology of underground cable based on ground penetrating radar |
LI Jing-Xiang1(), ZHAO Ming1, LAI Hao1, XIONG Shuang-Cheng1, TANG Yang2 |
1. GZ Bureau, EHV Power Transmission Company of China Southern Power Gird, Guangzhou 510000, China 2. College of Electrical Engineering & New Energy, China Three Gorges University, Yichang 443002, China |
|
|
Abstract In order to realize the rapid detection and identification of underground power cables, this paper proposed a method based on ground penetrating radar for imaging and identification of underground cables. Firstly, the characteristics of the detection waveforms of the underground charging cable and the non-charged medium under the action of ground penetrating radar were analyzed by forward modeling experiments, which highlighted the particularity of the reflected waveform of the charged cable, and then the magnetic field radiation of the cable under the common wiring mode was established based on the principle of magnetic field superposition. The calculation model explained the cause and particularity of cable detection waveform from the perspective of cable structure and magnetic field distribution, and further highlighted the difference between the cable and other non-charged formation media. A method for detecting and identifying underground cable based on ground penetrating radar was proposed. Finally, the proposed method was verified by inversion experiments. The experimental results show that the proposed method has a good application effect in cable detection and identification.
|
Received: 28 June 2019
Published: 29 December 2020
|
|
|
|
|
典型介质 | 典型介质探测图像 | 雷达图像特征描述 | 典型介质 | 典型介质探测图像 | 雷达图像特征描述 | 金属水管 | | 图像波长较短,波形呈尖锐状,反射波幅值较大,无多次反射与振荡现象 | 地层空洞 | | 反射波明显,图像局部有较强反射波且波形较长 | 花岗岩 | | 图像波长较短,波形尖锐但不明显,反射波幅值小 | 电缆 | | 图像上方密集三角反射波形为钢筋网反射波,下方回波呈明显叠加与振荡状 | 排水通道 | | 图像上方为钢筋网路面,图像下方局部有较强回波 | 公路 | | 波形近似水平分布,波形连续且相似,为路面分层界面 |
|
The radar detection images of different medium
|
|
The schematic diagram of cable structure
|
|
The schematic diagram of cable magnetic field radiation
|
|
The distribution curve of cable magnetic field strength
|
|
The schematic diagram of GPR electromagnetic wave radiation cable
|
|
The single channel waveform of a typical medium
|
|
The detection site map of the cell
|
|
The detection waveform of power cable of survey area 1
|
|
The verification diagram of site excavation of survey area 1
|
|
The detection waveform of non-charged medium of survey area 1
|
[1] |
李振兴, 孟晓星, 李振华, 等. 应用等效网络原理的新型配电网故障定位技术[J]. 电力系统及其自动化学报, 2019,31(1):31-39.
|
[1] |
Li Z X, Meng X X, Li Z H, et al. Novel fault location technology for distribution network based on equivalent network principle[J]. Proceedings of the CSU-EPSA, 2019,31(1):31-39.
|
[2] |
姜运, 彭红海, 曾祥君, 等. 配电网故障行波定位动模实验平台[J]. 电力科学与技术学报, 2017,32(3):81-85.
|
[2] |
Jiang Y, Peng H H, Zeng X J, et al. Dynamic simulation experimental platform for traveling-wave-based fault location in distribution network[J]. Journal of Electric Power Science and Technology, 2017,32(3):81-85.
|
[3] |
李鸿, 韩聪, 张雷. 一种地下电力电缆路径检测系统的研究[J]. 电测与仪表, 2015,52(16):73-77.
|
[3] |
Li H, Han C, Zhang L. Research on an underground electricity cable path detection system[J]. Electrical Measurement & Instrumentation, 2015,52(16):73-77.
|
[4] |
王广柱, 贾春娟, 张立斌. 一种带钢铠的低压电力电缆故障精确定位新方法[J]. 电力系统自动化, 2014,38(3):161-165.
|
[4] |
Wang G Z, Jia C J, Zhang L B. A novel method of fault accurate location for low voltage power cables with steel armor[J]. Automation of Electric Power Systems, 2014,38(3):161-165.
|
[5] |
Roqueta G, Jofre L, Feng M Q. Analysis of the electromagnetic signature of reinforced concrete structures for nondestructive evaluation of corrosion damage[J]. IEEE Transaction on Instrumentation and Measurement, 2012,61:1090-1098.
|
[6] |
刘生荣, 张瑾爱, 唐小平. 探地雷达在探测基岩顶深度中的应用[J]. 物探与化探, 2018,42(2):325-330.
|
[6] |
Liu S R, Zhang J A, Tang X P. The application of GPR in detecting the depth of bedrock[J]. Geophysical and Geochemical Exploration, 2018,42(2):325-330.
|
[7] |
陈文涛, 周利兵, 李山, 等. 基于探地雷达对变电站接地网的成像检测技术[J]. 电瓷避雷器, 2018,31(3):54-59.
|
[7] |
Chen W T, Zhou L B, Li S, et al. Imaging detection technology of substation grounding network based on ground penetrating radar[J]. Insulators and Surge Arresters, 2018 , 31(3):54-59.
|
[8] |
梁皓澜, 周力行, 朱凌峰, 等. 基于探地雷达的电磁散射成像技术对杆塔接地体的腐蚀检测[J]. 电瓷避雷器, 2016(6):183-186.
|
[8] |
Liang H L, Zhou L X, Zhu L F, et al. Detection of the tower electromagnetic grounding scattering corrosion based on gpr imaging technology[J]. Insulators and Surge Arresters, 2016(6):183-186.
|
[9] |
廖旭涛, 洪天求, 刘东甲, 等. 非金属管道的电磁波反射频率特性研究[J]. 合肥工业大学学报:自然科学版, 2018,41(4):490-496,526.
|
[9] |
Liao X T, Hong T Q, Liu D J, et al. Frequency properties of electromagnetic wave reflection of nonmetallic pipeline[J]. Journal of Hefei University of Technology:Natural Science, 2018,41(4):490-496,526.
|
[10] |
张军伟, 刘秉峰, 李雪, 等. 基于GPRMax2D的地下管线精细化探测方法[J]. 物探与化探, 2019,43(2):435-440.
|
[10] |
Zhang J W, Liu B F, Li X, et al. Refined detection method of underground pipeline based on GPRMax2D[J]. Geophysical and Geochemical Exploration, 2019,43(2):435-440.
|
[11] |
张鹏, 董韬, 马彬, 等. 基于探地雷达的地下管线管径探测与判识方法[J]. 地下空间与工程学报, 2015,11(4):1023-1032.
|
[11] |
Zhang P, Dong W, Ma B, et al. Research on interpreting the information of underground pipeline’s diameter detected by GPR[J]. Chinese Journal of Underground Space and Engineering, 2015,11(4):1023-1032.
|
[12] |
吴春喜, 卢恩贵. 电力电缆的快速识别方法初探[J]. 河北能源职业技术学院学报, 2016,16(2):54-56.
|
[12] |
Wu C X, Lu E G. Preliminary exploration to rapid identification method of the power cables[J]. Journal of Hebei Energy Vocational and Technical College, 2016,16(2):54-56.
|
[13] |
Di Q Y, Zhang M G, Wang M Y. Time-domain inversion of GPR data containing attenuation resulting from conductive losses[J]. Geophysics, 2006,71(5):103-109.
|
[14] |
Jiang Z M, Zeng Z F, Li J, et al. Simulation and analysis of GPR signal based on stochastic media model with an ellipsoidal autocorrelation function[J]. Journal of Applied Geophysics, 2013,99:91-97.
|
[15] |
李艳, 孟毓. 500 kV电缆隧道的电磁场研究[J]. 中国科技论文, 2016,11(11):1315-1320.
|
[15] |
Li Y, Meng Y. Study of electromagnetic field of 500 kV cables in tunnel[J]. China Sciencepaper, 2016,11(11):1315-1320.
|
[16] |
万保权, 干喆渊, 何旺龄, 等. 电力电缆线路的电磁环境影响因子分析[J]. 电网技术, 2013,37(6):1536-1541.
|
[16] |
Wan B Q, Gan Z Y, He W L, et al. Analysis on influence factors of electromagnetic environmental for underground power cable[J]. Power System Technology, 2013,37(6):1536-1541.
|
[17] |
张向明, 腾腾, 黄垂兵, 等. 供电电缆磁场辐射的预测模型及优化设计[J]. 海军工程大学学报, 2015,27(2):10-15.
|
[17] |
Zhang X M, Teng T, Huang C B, et al. Prediction model and its field radiation of optimal design for magnetic power supply cable[J]. Journal of Naval University of Engineering, 2015,27(2):10-15.
|
[18] |
周星, 王川川, 朱长青, 等. 外场辐照下埋地电缆瞬态响应规律研究[J]. 高压电器, 2013,49(12):7-12.
|
[18] |
Zhou X, Wang C C, Zhu C Q, et al. Transient induction response law of buried cableexcited by external electromagnetic field[J]. High Voltage Apparatus, 2013,49(12):7-12.
|
[19] |
刘青, 谢彦召. 高空电磁脉冲作用下埋地电缆的瞬态响应规律[J]. 高电压技术, 2017,43(9):3014-3020.
|
[19] |
Liu Q, Xie Y Z. Transient response law of buried cable to high-altitude electromagnetic pulse[J]. High Voltage Engineering, 2017,43(9):3014-3020.
|
[1] |
WANG Bo, GUO Liang-Hui, CUI Ya-Tong, Wang Xiang. The approach to gravity forward calculation of 3D Tesseroid mesh model and its parallel algorithm[J]. Geophysical and Geochemical Exploration, 2021, 45(6): 1597-1605. |
[2] |
WANG Guang-Wen, WANG Hai-Yan, LI Hong-Qiang, LI Wen-Hui, PANG Yong-Xiang. Research and application of seismic forward simulation technology in deep reflection seismic profile detection[J]. Geophysical and Geochemical Exploration, 2021, 45(4): 970-980. |
|
|
|
|